Introduction

* Grades:
> Midterm 30\%
$>$ Assignments 20% (about 3 or 4, may use Matlab)
$>$ Final 50%
* Econometrics is interested in drawing inferences about parameters. We have:
$>$ A sample of observations $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with joint distribution $f_{n}(x)$
$>$ A model (based on econ theory)
- Parametric: $p_{n}(x \mid \theta)$, the likelihood function of x given a parameter $\theta \rightarrow$ this is the focus of this course
- Classic
- Bayesian
- Non parametric: not a fixed θ, but a potentially infinite dimension of parameters
- Semi-parametric: in-between parametric and non-parametric
$>$ Goal: to draw inference on θ given x.
* Parametric Methods

1. Classic inference

- θ has a true value θ_{0}, which is unknown
- Assuming that θ_{0} exists means that $p_{n}\left(x \mid \theta_{0}\right)=f_{n}(x)$
- Need to find θ_{0}
- Find estimated $\hat{\theta}$
- Find distribution of $\hat{\theta}, p\left(\hat{\theta} \mid \theta_{0}\right)$
- Exact finite sample distribution \rightarrow but this is rare
- Approximations
$>$ Asymptotic, $n \rightarrow \infty$
> Bootstrap (draw pseudo-random samples)

2. Bayesian inference: assumes that θ is a random variable from a probability distribution

- θ is a r.v.
- No true value θ_{0}
- θ has an a priori density $\pi(\theta)$
- Goal is to find an a posteriori density $p_{n}(\theta \mid x)$

$$
\underbrace{\pi(\theta)}_{\text {apriori }}{ }_{\text {likelihood }}^{p_{n}(x \mid \theta)}=\underbrace{p(x, \theta)}_{\text {joint }}
$$

with

$$
p_{n}(\theta \mid x)=\frac{p(x, \theta)}{\int p(x, \theta) d \theta}
$$

* Properties of estimators (Note: an estimator is a statistic.)
$>$ Unbiasness: $E \hat{\theta}=\theta_{0} \quad\left(1^{\text {st }}\right.$ moment $)$
$>$ Efficiency: $\quad \hat{\theta}_{1}$ is more efficient than $\hat{\theta}_{2}$ if $\operatorname{Var}\left(\hat{\theta}_{1}\right) \leq \operatorname{Var}\left(\hat{\theta}_{2}\right)$
- Classify the estimator according to a loss function
- Most common: MSE

- MSE does not provide complete classification
- Clearly, $\hat{\theta}_{1}$ is not admissible because it is dominated by $\hat{\theta}_{2}$ and $\hat{\theta}_{3}$ across all possible values of θ. However, we cannot rank $\hat{\theta}_{2}$ and $\hat{\theta}_{3}$.

Linear Regression Model (Chpt 1)

* Basic assumptions
> Dependent/LHS variables (Regressands): y
$>$ Explanatory/RHS variables (Regressors): $\quad \mathbf{x}^{k}, k=1,2, \ldots, K$
$>$ Goal: explain y as a function of $\mathbf{x}^{k}, k=1,2, \ldots, K$
* Data:
$>$ Indices:
- Cross-section: $i=1,2, \ldots, n$
- Time series: $\quad t=1,2, \ldots, T$
$>$ Dependent variable: y_{i}

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{i} \\
\vdots \\
y_{n}
\end{array}\right]_{(n \times 1)}
$$

$>$ Independent variable: $x_{i k}$

$$
\mathbf{x}^{k}=\left[\begin{array}{c}
x_{1 k} \\
\vdots \\
x_{i k} \\
\vdots \\
x_{n k}
\end{array}\right]_{(n \times 1)} \quad \mathbf{x}_{i}=\left[\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i k} \\
\vdots \\
x_{i K}
\end{array}\right]_{(K \times 1)}
$$

$$
\left.\begin{array}{rl}
\rightarrow \underset{(n \times K)}{\mathbf{X}}= & {\left[\begin{array}{llll}
\mathbf{x}^{1} & \mathbf{x}^{2} & \cdots & \mathbf{x}^{K}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
x_{11} & x_{12} & \cdots & x_{1 K} \\
x_{21} & x_{22} & \cdots & x_{2 K} \\
\vdots & & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n K}
\end{array}\right]_{(n \times K)}} \\
& {\left[\begin{array}{cccc}
x_{11} & \cdots & x_{1 k} & \cdots \\
\vdots & \ddots & x_{1 K} \\
\vdots & & \vdots \\
x_{i 1} & \cdots & x_{i k} & \cdots \\
\vdots & & x_{i K} \\
x_{n 1} & \cdots & \ddots & \vdots \\
x_{n k}
\end{array}\right] \mathbf{x}_{i}^{\prime}} \\
\cdots & x_{n K}
\end{array}\right]
$$

* We want to explain y as a linear function of x^{k}

$$
\mathbf{y} \approx \sum_{k=1}^{K} b_{k} \mathbf{x}^{k} \Leftrightarrow y_{i} \approx \sum_{k=1}^{K} b_{k} x_{i k}
$$

i.e. equality between vectors in \mathbb{R}^{n} component by component.

$$
y_{i}=\sum_{k=1}^{K} b_{k} x_{i k}+\underbrace{u_{i}}_{\text {error term }}
$$

$>$ The error term (or disturbance) is connected to the model

- Note: do not confuse the error term with the residual (the realized error)
- The residual is connected to the estimation method
- E.g. OLS estimation $\rightarrow \hat{b}_{k}$ with OLS residual

$$
y_{i}-\sum_{k=1}^{K} \hat{b}_{k} x_{i k} \equiv u_{i}
$$

GLS estimation $\rightarrow b_{k}^{*}$ with GLS residual

$$
y_{i}-\sum_{k=1}^{K} b_{k}^{*} x_{i k} \equiv u_{i}^{*}
$$

$>$ We need some assumptions about the probability distribution of the r.v.

* Model is implied by restrictive assumptions

Assumption 1.1. Linearity

$$
\mathbf{y}=X^{\prime} \mathbf{b}+\mathbf{u}
$$

- Example in the book about wage equation

$$
\begin{aligned}
W A G E_{i} & \approx e^{b_{1}} e^{b_{2} S_{i}} e^{b_{3} T E N_{i}} e^{b_{4} E X P_{i}} \\
\log \left(W A G E_{i}\right) & =b_{1}+b_{2} S_{i}+b_{3} T E N_{i}+b_{4} E X P_{i}+u_{i}
\end{aligned}
$$

$>$ Assumption 1.2. Exogeneity

$$
E(\mathbf{u} \mid \mathbf{X})=0
$$

- Reminder: Law of Iterated Expectations.

$$
E[\underbrace{E(Z \mid W)}_{\text {r.v.that depends on } W}]=E Z
$$

Here,

$$
E(\mathbf{u} \mid \mathbf{X})=0 \underset{\nLeftarrow}{\Rightarrow} E \mathbf{u}=0
$$

This is the exogeneity assumption. Note that the implication doesn't go the other way.

- What happens if $E \mathbf{u}=0$ but $E(\mathbf{u} \mid \mathbf{X}) \neq 0$?
- Endogeneity or simultaneity problem. This happens when
- Some factors are observed by economic agents but not by the econometrician.
- These observations are taken into account by the agent to determine x_{i}

Exogeneity Assumption of the Linear Regression Model

* The linear regression model

$$
y \approx \sum_{k=1}^{K} b_{k} X^{k}
$$

2 assumptions:
(1) $y_{i}=\sum_{k=0}^{K} b_{k} x_{i k}+u_{i}, \quad i=1, \ldots, N \quad$ linearity
(2) $E\left(u_{i} \mid X\right)=0 \Rightarrow E\left(u_{i}\right)=0 \quad$ (strict) exogeneity
$>$ Implications of exogeneity assumption.

1. $E\left(u_{i}\right)=0$. This is by the Law of Iterated Expectations. Consider

$$
\begin{aligned}
E\left(E\left(u_{i} \mid X\right)\right) & =\sum_{x}\left(E\left(u_{i} \mid X=x\right)\right) P(X=x) \\
& =\sum_{x}\left(\sum_{u} u \cdot P\left(u_{i}=u \mid X=x\right)\right) P(X=x) \\
& =\sum_{x} \sum_{u} u \cdot P\left(u_{i}=u \mid X=x\right) P(X=x) \\
& =\sum_{x} \sum_{u} u \cdot P\left(u_{i}=u, X=x\right) \\
& =\sum_{u} u \cdot \sum_{x} P\left(u_{i}=u, X=x\right) \\
& =\sum_{u} u \cdot P\left(u_{i}=u\right) \\
& =E\left(u_{i}\right)
\end{aligned}
$$

$\because E\left(u_{i} \mid X\right)=0$ by the exogeneity assumption
$\therefore E\left(E\left(u_{i} \mid X\right)\right)=E(0)=0=E\left(u_{i}\right)$
2. In any observation, each regressor is orthogonal to each one of the error terms, i.e.

$$
\begin{aligned}
& E\left(x_{j k} u_{i}\right)=0, \quad \forall i, j=1, \ldots, n, \quad \forall k=1, \ldots, K \\
& E\left(\mathbf{x}_{j} u_{i}\right)=\left[\begin{array}{c}
E\left(x_{j 1} u_{i}\right) \\
E\left(x_{j 2} u_{i}\right) \\
\vdots \\
E\left(x_{j K} u_{i}\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]_{(K \times 1)}, \quad \forall i, j=1, \ldots, n
\end{aligned}
$$

- Proof. Since $x_{j k}$ is an element of X, the exogeneity assumption implies that

$$
E\left(u_{i} \mid x_{j k}\right)=E\left[E\left(u_{i} \mid X\right) \mid x_{j k}\right]=0
$$

Then, it follows that

$$
E\left(x_{j k} u_{i}\right)=E\left[E\left(x_{j k} u_{i} \mid x_{j k}\right)\right]=E\left[x_{j k} E\left(u_{i} \mid x_{j k}\right)\right]=0
$$

3. Regressors are uncorrelated with the error terms:
$\operatorname{Cov}\left(x_{j k}, u_{i}\right)=\underbrace{E\left(x_{j k} u_{i}\right)}_{=0}-E\left(x_{j k}\right) \underbrace{E\left(u_{i}\right)}_{=0}=0 \Rightarrow \rho_{x_{j k}, u_{i}}=\frac{\operatorname{Cov}\left(x_{j k}, u_{i}\right)}{\sigma_{x_{j k}} \sigma_{u_{i}}}=0, \quad \forall i, j, k$

* Example. Production.

$$
\ln \left(Q_{i}\right)=b_{1}+\underbrace{b_{2}}_{\begin{array}{c}
\text { elasticity } \\
\text { coefficient }
\end{array}} \ln \left(L_{i}\right)+u_{i}
$$

$>E\left(u_{i} \mid L_{i}\right)=0\left(\mathrm{OK}\right.$ to assume $\left.E\left(u_{i} \mid L_{i}\right)=0\right)$
$>$ Suppose the firm has information that is not observed by the econometrician

$$
u_{i}=\underbrace{v_{i}}_{\begin{array}{c}
\text { observed by the firm } \\
\text { but not by the econometrician }
\end{array}}+\underbrace{w_{i}}_{\begin{array}{c}
\text { unobserved } \\
\text { by both parties }
\end{array}}
$$

Then,

$$
Q_{i}=L_{i}^{b_{2}} \underbrace{e^{b_{1}} e^{v_{i}}}_{=A_{i}} e^{w_{i}}
$$

- Problem of the firm \rightarrow maximize expected profit

$$
\max _{L_{i}}\left[p A_{i} L_{i}^{b_{2}} E\left(e^{w_{i}}\right)-W L_{i}\right]
$$

FOC w.r.t. to L_{i}

$$
\begin{aligned}
& p A_{i} b_{2} L_{i}^{b_{2}-1} E\left(e^{w_{i}}\right)=W \\
& \Leftrightarrow \quad L_{i}=\left(\frac{W}{p}\right)^{\frac{1}{b_{2}-1}}\left(b_{2} A_{i} E\left(e^{w_{i}}\right)\right)^{\frac{1}{b_{2}+1}} \\
& \quad \ln L_{i}=\underbrace{\frac{1}{b_{2}-1} \ln \left(\frac{W}{p}\right)+\frac{1}{1-b_{2}} \ln \left(b_{2} E\left(e^{w_{i}}\right)\right)}_{=a}+\frac{1}{1-b_{2}} \ln A_{i} \\
& \Leftrightarrow \quad=a+\frac{1}{1-b_{2}} \underbrace{\ln A_{i}}_{=b_{1}+v_{i}} \\
& \quad=a+\frac{1}{1-b_{2}}\left(b_{1}+v_{i}\right) \\
& \Leftrightarrow \quad v_{i}=\left(1-b_{2}\right) \ln L_{i}-\left(1-b_{2}\right) a-b_{1}
\end{aligned}
$$

- Exogeneity assumption:

$$
\begin{aligned}
E\left(\ln \left(Q_{i}\right) \mid L_{i}\right) & =b_{1}+b_{2} \ln L_{i}+\underbrace{E\left(v_{i}+w_{i} \mid L_{i}\right)}_{=0 \text { by exogeneity }} \\
& =b_{1}+b_{2} \ln L_{i}+E\left(w_{i} \mid L_{i}\right)+E\left(v_{i} \mid L_{i}\right)
\end{aligned}
$$

- Note that the exogeneity assumption can be stated in two ways

1. $E\left(u_{i} \mid X\right)=0$
2. $E(y \mid X)=X b+\mathbf{0}$

Because w_{i} is unobserved, it is likely OK to assume $E\left(w_{i} \mid L_{i}\right)=0$. But,

$$
\begin{aligned}
E\left(v_{i} \mid L_{i}\right) & =E\left[\left(1-b_{2}\right) \ln L_{i}-a\left(1-b_{2}\right)-b_{1} \mid L_{i}\right] \\
& =\underbrace{-a\left(1-b_{2}\right)-b_{1}}_{=\alpha}+\left(1-b_{2}\right) \ln L_{i}
\end{aligned}
$$

Then,

$$
\begin{aligned}
E\left(\ln Q_{i} \mid L_{i}\right) & =b_{1}+b_{2} \ln L_{i}+\alpha+\left(1-b_{2}\right) \ln L_{i} \\
& =b_{1}+\alpha+1 \cdot \ln L_{i}
\end{aligned}
$$

- Therefore, exogeneity implies

$$
E\left(u_{i} \mid X_{i}\right)=0 \Leftrightarrow E\left(y_{i} \mid X_{i}\right)=X_{i}^{\prime} b
$$

when $y_{i}=X_{i}^{\prime} b+u_{i}$

- Here

$$
\ln Q_{i}=b_{1}+b_{2} \ln L_{i}+u_{i} \Rightarrow E\left(\ln Q_{i} \mid L_{i}\right)=b_{1}+b_{2} \ln L_{i}
$$

$>$ More generally, when there is a link between the error term, u_{i}, and the explanatory variables X_{i}, there will be a simultaneity issue or endogeneity issue.

- This issue leads to simultaneity bias
- In our example, $\left(1-b_{2}\right)$
* Notations again

$$
y_{i}=x_{i}^{\prime} b+u_{i}, \quad X=\left[\begin{array}{llll}
X^{1} & X^{2} & \cdots & X^{K}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{N}^{\prime}
\end{array}\right]
$$

$>X^{k} \quad(N, 1)$-vector, with superscript denoting the $k^{\text {th }}$ RHS variable
$\Rightarrow x_{i} \quad(K, 1)$-vector, with subscript denoting the $i^{\text {th }}$ observation

Property of the Matrix X

* Assumption 1.3. No multicollinearity. $\operatorname{Rank}(X)=K$, i.e. full-rank (or full column rank).

It means that the K columns of X (i.e. $X^{k}, k=1, \ldots, K$) are linearly independent.
$>$ Note. Max. linearly independent rows $=$ max. linearly indep. Columns $=$ max. size of non-zero (or non-degenerate) minors (or submatrices)
$>$ Interpretation 1. If there is k_{0} such that

$$
X^{k_{0}}=\sum_{k \neq k_{0}} \alpha_{k} X^{k}
$$

$X^{k_{0}}$ does not help me explain y.

- In theory, this assumption has cost 0 (i.e. can make this wlog).
- In practice, we can have almost-perfect multicollinearity. This will create problems when we try to invert the matrix $\left(X^{\prime} X\right)$.
$>$ Interpretation 2. Suppose $X b=0$. Then the no multicollinearity implies necessarily that $b=0$, i.e. $b_{k}=\mathbf{0}$. So when we make the assumption of no multicollinearity, we are also assuming that the model is meaningful.
$>$ Interpretation 3. A theorem in matrix algebra states that if the matrix X is of full column rank, then $X^{\prime} X$ is non-singular.
- Proof. Let α be a $K \times 1$ vector.

$$
\alpha^{\prime}\left(X^{\prime} X\right) \alpha=(X \alpha)^{\prime}(X \alpha)=\|\underbrace{X \alpha}_{(N \times 1)}\|^{2} \geq 0
$$

This means that $\left(X^{\prime} X\right)$ is a positive matrix. Thus,

$$
\alpha^{\prime} X^{\prime} X \alpha=0 \quad \Leftrightarrow \quad X \alpha=0
$$

$\because \quad X$ is full rank
$\therefore \forall k=1, \ldots, K: X^{k}$ is linearly independent

$$
\begin{aligned}
& \Leftrightarrow\left(\sum_{k=1}^{K} \alpha_{k} X^{k}=0 \Rightarrow \alpha_{k}=0, \quad \forall k=1, \ldots, K\right) \\
& \Leftrightarrow(X \alpha=0 \Rightarrow \alpha=0)
\end{aligned}
$$

- This is a useful way to show that a matrix is non-singular. That is, it is equivalent to showing that it is positive definite (as long as I know it is positive).
- Let M be an $n \times n$ matrix. Then,
M is positive (or positive semi-definite) if for all ($n \times 1$)-vector α

$$
\alpha^{\prime} M \alpha \geq 0
$$

M is positive definite if for all $(n \times 1)$-vector α

$$
\alpha^{\prime} M \alpha \geq 0 \text { and } \alpha^{\prime} M \alpha=0 \Leftrightarrow \alpha=0
$$

$>$ Interpretation 4. $X^{\prime} X=\sum_{i=1}^{N} x_{i} x_{i}^{\prime}$. Suppose x_{i} are iid. Then by the WLLN

$$
\underbrace{\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}}_{\text {sample mean }} \xrightarrow{p} \underbrace{E\left(x_{i} x_{i}^{\prime}\right)}_{\text {true mean }}
$$

- Slutsky's Theorem.

$$
\underbrace{\operatorname{det}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)}_{d_{N}} \stackrel{p}{\rightarrow} \underbrace{\operatorname{det}\left[E\left(x_{i} x_{i}^{\prime}\right)\right]}_{d}
$$

Recall convergence in probability

$$
P\left(\left|d_{N}-d\right|>\epsilon\right) \xrightarrow{N \rightarrow \infty} 0, \quad \forall \epsilon>0
$$

If we know that $d>0$,

$$
\begin{aligned}
P\left(\left|d_{N}-d\right|>\frac{d}{2}\right) \xrightarrow{N} 0 & \Leftrightarrow P\left(\left|d_{N}-d\right| \leq \frac{d}{2}\right) \xrightarrow{N} 1 \\
& \Rightarrow P\left(d_{N} \geq \frac{d}{2}\right) \xrightarrow{N} 1
\end{aligned}
$$

So $\operatorname{Rank}(X)=K \Leftrightarrow \operatorname{det}\left(X^{\prime} X\right)>0$. Thus, for N large enough, $\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}$ should be invertible (as long as $\operatorname{det}\left[E\left(x_{i} x_{i}^{\prime}\right)\right]>0$).

- Question: Why should we maintain this assumption?
- $E\left(x_{i} x_{i}^{\prime}\right)$ is \oplus (positive semi-definite):

$$
\alpha^{\prime} E\left(x_{i} x_{i}^{\prime}\right) \alpha=E\left[\left(\alpha^{\prime} x_{i}\right)\left(x_{i} \alpha\right)\right]=E\left[\left(x_{i}^{\prime} \alpha\right)^{2}\right] \geq 0
$$

- Positive definite?

$$
\alpha^{\prime} E\left(x_{i} x_{i}^{\prime}\right) \alpha=0 \Leftrightarrow E\left[\left(x_{i}^{\prime} \alpha\right)^{2}\right]=0 \Leftrightarrow x_{i}^{\prime} \alpha=0 \text { a.s. }
$$

$$
\alpha \neq 0 \text { only if there are multicollinearities. }
$$

Geometric \& Statistical Interpretations of Least Squares

* Naïve approach:

$$
y_{i} \approx \sum_{k=1}^{K} b_{k} x_{i k}
$$

Choose \hat{b} such that

$$
\sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{K} \hat{b}_{k} x_{i k}\right)^{2} \leq \sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{K} b_{k} x_{i k}\right)^{2}, \quad \forall b_{k}
$$

$>$ Note: by definition of OLS,

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{K} \hat{b}_{k} x_{i k}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{K} b_{k}^{0} x_{i k}\right)^{2} \Leftrightarrow \frac{1}{n} \sum_{(i=1)}^{n} \hat{u}_{i}^{2} \leq \frac{1}{n} \sum_{i=1}^{n} u_{i}^{2}
$$

So the problem is

$$
\min _{b \in \mathbb{R}^{K}} \sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{K} b_{k} x_{i k}\right)^{2} \Leftrightarrow \min _{b \in \mathbb{R}^{K}}[(y-X b)^{\prime} \underbrace{(y-X b)}_{\in \mathbb{R}^{n}}] .
$$

$L(X)=\left\{X b: b \in \mathbb{R}^{K}\right\}=\left\{\sum_{k=1}^{K} b_{k} X^{k}: b_{k} \in \mathbb{R}, \forall k\right\}$ and $X b \in \mathbb{R}^{n}$ $L(X)$ is a subspace of \mathbb{R}^{n}
$>\hat{b}$ is characterized by K orthogonal relationships

$$
\begin{aligned}
\underbrace{(y-X \hat{b})}_{\in \mathbb{R}^{n}} \perp \underbrace{X^{k}}_{\in \mathbb{R}^{n}}, \quad \forall k & \Leftrightarrow X^{k^{\prime}} \cdot(y-X \hat{b})=0 \\
& \Leftrightarrow X_{\text {system of } K \text { linear equations }}^{\prime}(y-X \hat{b})=0 \\
& \Leftrightarrow X^{\prime} y=X^{\prime} X \hat{b} \\
& \Leftrightarrow \hat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

* Notations: matrix of orthogonal projection

$$
\begin{aligned}
& P_{X}: \text { matrix of orthogonal projection on } L(X) \\
& P_{X} y=X \hat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

$>$ Should be true for all y
$>$ Can identify P_{X} as

$$
P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

$>$ Matrix of orthogonal projection on the orthogonal of $L(X)$, i.e. $L(X)^{\perp}$:

$$
M_{X}=I_{n}-P_{X} \Rightarrow M_{X} y=\left(I_{n}-P_{X}\right) y
$$

$$
\begin{aligned}
& =y-P_{X} y \\
& =y-X \hat{b} \\
& =\hat{u} \rightarrow \text { OLS residual }
\end{aligned}
$$

$>$ Note that

$$
\begin{aligned}
y=X b^{0}+u & \Leftrightarrow u=y-X b^{0} \\
& \Rightarrow M_{X} u=\widehat{u}-\underbrace{M_{X} X b^{0}}_{=0}
\end{aligned}
$$

Mathematically,

$$
\begin{aligned}
M_{X} X b^{0} & =I_{n} X b^{0}-X \underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime} X}_{=I_{n}} b^{0} \\
& =X b^{0}-X b^{0} \\
& =0
\end{aligned}
$$

> Properties of Projection Matrices

- Idempotence and symmetry are necessary and sufficient conditions for projection matrices
- Symmetry: $A=A^{\prime}$
- Idempotence: $A^{\ell}=A$ for any $\ell \in \mathbb{N}$
* Application: the Frish-Waugh Theorem (cf. P.72, ex.4)
> Motivation:

$$
y=X b+Z c+u=[X: Z]\binom{b}{c}+u
$$

where X is $\left(n \times K_{1}\right)$ and Z is $\left(n \times K_{2}\right)$.

Geometric Interpretation of Linear Regression (cont'd)

* Consider the true model:

$$
y=X b+Z c+u=[X: Z]\binom{b}{c}+u
$$

$>$ Question: How bad/wrong is it to regress Y on X only?
$>$ Assumptions for the true model:
(i) $E(u \mid X, Z)=0$
(ii) $\operatorname{Rank}([X: Z])=K_{1}+K_{2}$
$>$ Assumptions for the "reduced" model without $Z: y=X \beta+v$
(1) $E(v \mid X)=0$
(2) $\operatorname{Rank}(X)=K_{1}$

* Compare (i) and (ii) to (1) and (2).
$>$ Easy to see that (ii) \Rightarrow (2)
$>$ What about (i) v.s. (1)?

$$
\begin{aligned}
E(y \mid X) & =E(X b+Z c+u \mid X) \\
& =X b+E(Z \mid X) c+\underbrace{E(u \mid X)}_{=0} \\
& =X b+E(Z \mid X) c
\end{aligned}
$$

- In order to get (1), I need $E(Z \mid X)$ to be linear in X, i.e.

$$
E(Z \mid X)=Х \Gamma
$$

Thus, the true model doesn't imply the "reduced" model

* Even if the "reduced" model is not necessarily implied by the true model, I can still perform OLS:

$$
\begin{aligned}
\text { OLS } S_{\text {Reduced }} & \hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\text { OLS } & \binom{\hat{b}}{\hat{c}} & =\left[\binom{X^{\prime}}{Z^{\prime}}\left(\begin{array}{ll}
X & Z
\end{array}\right)\right]^{-1}\binom{X^{\prime}}{Z^{\prime}} y
\end{aligned}
$$

$>\hat{b}=$? \hat{b} v.s. $\hat{\beta}$?

Frish-Waugh Theorem.

$$
\hat{b}=\left(X^{\prime} M_{2} X\right)^{-1} X^{\prime} M_{2} y
$$

$>$ Proof.

$$
\binom{\hat{b}}{\hat{c}}=\arg \min _{\binom{b}{c}}\|y-(X b+Z c)\|^{2}
$$

- Step 1. Concentrate w.r.t. c. For given b, minimize w.r.t. c only. Get $c(b)$

$$
\min _{c}\|(y-X b)-Z c\|^{2}
$$

Get $c(b)$ such that

$$
Z c(b)=P_{Z}(y-X b)
$$

- Step 2. Minimize the concentrated objective function w.r.t. b.

$$
\begin{aligned}
\min _{b}\left\|y-X b-P_{Z}(y-X b)\right\|^{2} & \Leftrightarrow \min _{b}\|\underbrace{M_{z} y}_{\tilde{y}}-\underbrace{M_{Z} X}_{\tilde{X}} b\|^{2} \\
& \Rightarrow \hat{b}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} y=\left(X^{\prime} M_{Z} X\right)^{-1} X^{\prime} M_{Z} y
\end{aligned}
$$

> Remark. In Practice,

$$
\begin{aligned}
& y / Z \Rightarrow P_{Z} y \Rightarrow M_{Z} y \text { residual } \\
& X^{k} / Z \Rightarrow P_{Z} X^{k} \Rightarrow M_{Z} X^{k} \text { residual }
\end{aligned}
$$

Then,

$$
M_{Z} y / \underbrace{M_{Z} X^{k}}_{M_{Z} X}, \quad \forall k
$$

$>$ Remark. Corollary of FW Thm. If $M_{Z} X=X$, then

$$
\hat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y, \quad(=\hat{\beta})
$$

So $M_{Z} X=X$. This means that

$$
\begin{aligned}
X \perp Z & \Leftrightarrow X^{k} \perp Z^{\ell}, \quad \forall k, \ell \\
& \Leftrightarrow \sum_{i=1}^{n} x_{i k} z_{i \ell}=0, \quad \forall k, \ell \\
& \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i k} z_{i \ell}=0, \quad \forall k, \ell
\end{aligned}
$$

But this does not mean that X^{k} and Z^{ℓ} are not correlated. Not quite Cov between X^{k} and Z^{ℓ}, only orthogonality condition.

* Next we consider the statistical interpretation of OLS
$>$ Finite sample properties
$>$ Interpretation

Finite Sample Properties of OLS

* Recall the standard assumptions
(1) $y=X b+u$
(2) $E(u \mid X)=0$, a.s.
(3) $\left|X^{\prime} X\right|>0$, a.s.

2 additional assumptions:
(4) $\operatorname{Var}(u \mid X)=\sigma^{2} I_{n}$, a.s. \rightarrow homoscedasticity
(5) $u \mid X \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$

* Properties:
$>$ Under assumption (1) - (3)

$$
E(\hat{b})=b
$$

- Proof. Use the law of iterated expectations:

$$
\begin{aligned}
E(\hat{b}) & =E[E(\hat{b} \mid X)] \\
& =E\left[E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} y \mid X\right]\right] \\
& =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} E(y \mid X)\right] \\
& =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} X b\right] \\
& =b
\end{aligned}
$$

$>$ Under assumption (1) - (4)

$$
\operatorname{Var}(\hat{b})=E\left[\left(X^{\prime} X\right)^{-1} \sigma^{2}\right]
$$

- Proof.

$$
\begin{aligned}
\operatorname{Var}(\hat{b}) & =E\left[(\hat{b}-E \hat{b})(\hat{b}-E \hat{b})^{\prime}\right] \\
& =E\left[(\hat{b}-b)(\hat{b}-b)^{\prime}\right] \\
& =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right] \\
& =E[\left(X^{\prime} X\right)^{-1} X^{\prime} \underbrace{E\left[u u^{\prime} \mid X\right]}_{=\sigma^{2} I_{n}} X\left(X^{\prime} X\right)^{-1}] \\
& =\sigma^{2} E\left[\left(X^{\prime} X\right)^{-1}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{b}-b & =\left(X^{\prime} X\right)^{-1} X^{\prime} y-b \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X b+u)-b \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

* Gauss-Markov Theorem (BLUE).

Under assumptions (1) - (4), the OLS \hat{b} is BLUE (best linear unbiased estimator). That is, for any linear (w.r.t. y) estimator,

$$
\tilde{b}=C y, \quad \text { s.t. } E \tilde{b}=b
$$

we have

$$
\operatorname{Var}(\hat{b}) \ll \operatorname{Var}(\tilde{b}) \Leftrightarrow(\operatorname{Var}(\tilde{b})-\operatorname{Var}(\hat{b})) \text { is psd. }
$$

* Cramer-Rao Theorem.

Under assumptions (1) - (5), \hat{b} is BUE (best unbiased estimator).
$>$ Property: Under assumption (1) - (5)

$$
\widehat{b}-b \mid X \sim \mathcal{N}\left(0, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

- Proof. Since $u \sim \mathcal{N}\left(0, \sigma^{2} I\right)$,

$$
\hat{b}-b=\left(X^{\prime} X\right)^{-1} X^{\prime} u
$$

Note this is not the same as the central limit theorem, because we have a finite sample.
$>$ Remark. If we want the unconditional distribution of $(\hat{b}-b)$, there are two options:

- Assume fixed regressors
- Asymptotic theory (i.e. as $n \rightarrow \infty$)
$>$ Remark. Standardize $(\hat{b}-b \mid X)$:

$$
\frac{\left(X^{\prime} X\right)^{1 / 2}}{\sigma}(\hat{b}-b \mid X) \sim \mathcal{N}(0, I)
$$

- This does not depend on X.
- This is the unconditional distribution, i.e.

$$
\frac{\left(X^{\prime} X\right)^{1 / 2}}{\sigma}(\hat{b}-b) \sim \mathcal{N}(0,1)
$$

- In general, σ is unknown! \rightarrow we need an estimator of σ to use the previous result.

$$
\hat{\sigma}^{2}=\frac{1}{n-K} \sum_{i=1}^{n} \hat{u}^{2}=\frac{1}{n-K} u^{\prime} M_{X} u
$$

- Proof ($\hat{\sigma}^{2}$ is unbiased).

$$
\begin{aligned}
& E\left(\hat{\sigma}^{2}\right)=\frac{1}{n-K} E \underbrace{\left(u^{\prime} M_{X} u\right)}_{\text {univariate }}=\frac{1}{n-K} E\left[\operatorname{tr}\left(u^{\prime} M_{X} u\right)\right]=\frac{1}{n-K} E\left(\operatorname{tr}\left(u u^{\prime} M_{X}\right)\right) \\
&=\frac{1}{n-K} E\left[E\left(\operatorname{tr}\left(u u^{\prime} M_{X}\right)\right) \mid X\right]=\frac{1}{n-K} E[\operatorname{tr}(\underbrace{E\left(u u^{\prime} \mid X\right)}_{=\sigma^{2} I} M_{X})] \\
&=\frac{\sigma^{2}}{n-K} E\left[\operatorname{tr}\left(M_{X}\right)\right] \\
& M_{X}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
&=n-\operatorname{tr}[\underbrace{\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1}}_{I_{K}}] \\
&=n-K
\end{aligned}
$$

where the trace has the following property:

$$
\operatorname{tr}(A B C)=\operatorname{tr}(B A C)=\operatorname{tr}(C A B)
$$

Statistical Interpretations of OLS

* Recall the model

$$
y_{i}=\underbrace{a}_{\text {constant term }}+\sum_{k=1}^{K} b_{k} x_{i k}+u_{i}
$$

Matrix of explanatory variables:

$$
\left[\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) X^{1} X^{2} \cdots X^{K}\right]=[\underbrace{e_{n}}_{\text {vector of } 1 \text { 's }} \quad \vdots X]
$$

$>$ Adding a column of 1 's to the regressors makes the linear regression a affine regression.

$>$ Orthogonal conditions between the residuals and the explanatory variables.

$$
\left\{\begin{array}{l}
e_{n}^{\prime}\left(y-\hat{a} e_{n}-X \hat{b}\right)=0 \\
X^{k^{\prime}}\left(y-\hat{a} e_{n}-X \hat{b}\right)=0
\end{array}, \quad \forall k=1, \ldots, K\right.
$$

We have $K+1$ linear equations to find $K+1$ parameters \hat{b} and \hat{a}. Note that

$$
\begin{aligned}
e_{n}^{\prime}\left(y-\hat{a} e_{n}-X \hat{b}\right)=0 & \Leftrightarrow \sum_{i=1}^{n} y_{i}-n \hat{a}-\sum_{k=1}^{K} \hat{b}_{k}\left(\sum_{i=1}^{n} x_{i k}\right)=0 \\
\text { divide by } n & \Leftrightarrow \bar{y}-\hat{a}-\sum_{k=1}^{K} \hat{b}_{k} \bar{X}^{k}=0 \\
& \Leftrightarrow \hat{a}=\bar{y}-\sum_{k=1}^{K} \hat{b}_{k} \bar{X}^{K} \\
& \Leftrightarrow \hat{\bar{u}=0}
\end{aligned}
$$

- $\overline{\hat{u}}$ is the empirical average of the OLS residuals. So by including a constant term, we are imposing that on average ??? is correct.

－With a constant term，the average residual is zero，and the average point belongs to the regression line
－If we do not introduce the constant term，

$$
\hat{y}=X \hat{b}
$$

Then the regression line goes through $(0,0)$ ．However，this does not minimize the sum of squares．
－If，in addition，you want the average point to belong to the regression line，then the regression line is completely determined．

Plug in the expression for \hat{a}

$$
y-\hat{a} e_{n}-X \hat{b}=\underbrace{\text { mean deviation }}_{\tilde{y}} ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 k=1 \quad \hat{b}_{k} \underbrace{\left(y-\bar{y} e_{n}\right)}_{\begin{array}{c}
\tilde{X}^{k} \\
\text { mean deviation }
\end{array}}
$$

Rewrite the orthogonal condition

$$
\begin{aligned}
X^{\prime}(\tilde{y}-\tilde{X} \hat{b})=0 & \Leftrightarrow \frac{1}{n} X^{\prime}(\tilde{y}-\tilde{X} \hat{b})=0 \\
& \Leftrightarrow \frac{1}{n} X^{k^{\prime}}(\tilde{y}-\tilde{X} \hat{b})=0, \quad \forall k=1, \ldots, K
\end{aligned}
$$

where

$$
\frac{1}{n} X^{k^{\prime}} \tilde{y}=\frac{1}{n} \sum_{i=1}^{n} x_{i k}\left(y_{i}-\bar{y}\right)
$$

is the sample（empirical）covariance between $x_{i k}$ and y_{i} ．Notation： $\operatorname{Cov}_{\text {emp }}\left(x_{i k}, y_{i}\right)$ ．

$$
\hat{b}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} y=\underbrace{\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{X}\right)^{-1}}_{\operatorname{Var} \operatorname{Vamp}\left(x_{i}\right)} \underbrace{\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{y}\right)}_{\operatorname{Cov}_{e m p}\left(x_{i}, y_{i}\right)}
$$

－The OLS estimator is the ratio of the $\operatorname{Cov}_{e m p}\left(x_{i}, y_{i}\right)$ and $\operatorname{Var}_{e m p}\left(x_{i}\right)$ ．
－We can make the interpretation of Var－Cov only because we include the constant term in the regression．Without the constant term，we only have the orthogonality．

Geometric Interpretation of OLS in the Space of Random Variables

* Recall

$$
\begin{array}{ccc}
(\hat{a}, \hat{b}) & =\arg \min _{a, b} \underbrace{\left[\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a-x_{i}^{\prime} b\right)^{2}\right]}_{\text {space of } \mathbb{R}^{n}} \\
\downarrow & \stackrel{?}{=} \quad \arg \min _{a, b} \underbrace{E\left(y_{i}-a-x_{i}^{\prime} b\right)}_{\text {space of r.v. }}
\end{array}
$$

$>\operatorname{In} \mathbb{R}^{n}$:

$>$ In space of r.v. that are square integrable,

- The norm (or distance) is

$$
\|u\|=\sqrt{E u^{2}}
$$

$$
\langle u, v\rangle=E(u v), \quad(\text { the inner product })
$$

The inner product is the extension of the norm, so $\langle u, u\rangle=\|u\|$.

* Computation of $E L\left(y_{i} \mid x_{i}\right)$:

$$
\left\{\begin{array}{l}
{\left[y_{i}-\left(a+x_{i}^{\prime} b\right)\right] \perp 1} \\
{\left[y_{i}-\left(a+x_{i}^{\prime} b\right)\right] \perp x_{i k}}
\end{array} \quad \forall k=1, \ldots, K \quad \Leftrightarrow \begin{cases}E\left(y_{i}-a-x_{i}^{\prime} b\right)=0 \\
E\left[\left(y_{i}-a-x_{i}^{\prime} b\right) x_{i k}\right]=0 & \forall k\end{cases}\right.
$$

From (*) we get

$$
a=E\left(y_{i}\right)-E\left(x_{i}^{\prime}\right) b
$$

Plug it into the second expectation:

$$
\begin{aligned}
E\left[\left(y_{i}-\left\{E y_{i}-a-E x_{i}^{\prime} b\right\}\right) x_{i}\right]=0 & \Rightarrow E\left[\left(y_{i}-E y_{i}\right) x_{i}\right]-E[\underbrace{\overbrace{\left(x_{i}-E x_{i}\right)^{\prime}}^{1 \times K} \tilde{b}_{b}^{K \times 1}}_{1 \times 1} x_{i}]=0 \\
& \Rightarrow \underbrace{E\left[x_{i}\left(x_{i}-E x_{i}\right)^{\prime}\right]}_{\operatorname{Var}\left(x_{i}\right)} b=\underbrace{E\left[\left(y_{i}-E y_{i}\right) x_{i}\right]}_{\operatorname{Cov}\left(x_{i} y_{i}\right)}
\end{aligned}
$$

If $\operatorname{Var}\left(x_{i}\right)$ is nonsingular,

$$
b=\left(\operatorname{Var}\left(x_{i}\right)\right)^{-1} \operatorname{Cov}\left(x_{i}, y_{i}\right)
$$

$>$ This is NOT an estimate!!! It is a population value (as opposed to a sample value)

Conclusion:

$$
E L\left(y_{i} \mid x_{i}\right)=a^{0}+x_{i}^{\prime} b^{0}
$$

with

$$
\left\{\begin{array}{l}
a^{0}=E y_{i}-E x_{i}^{\prime} b^{0} \\
b^{0}=\left(\operatorname{Var}\left(x_{i}\right)\right)^{-1} \operatorname{Cov}\left(x_{i}, y_{i}\right)
\end{array}\right.
$$

same formula as the one we got for the estimates \hat{a}, \hat{b} in the space of \mathbb{R}^{n}. But now we have population moments.

- Remark. Why do we have $\operatorname{Var}\left(x_{i}\right)$ nonsingular?
- $\operatorname{Var}\left(x_{i}\right)$ is PSD $\alpha \in \mathbb{R}^{k}, \alpha^{\prime} \operatorname{Var}\left(x_{i}\right) \alpha=\operatorname{Var}\left(\alpha^{\prime} x_{i}\right) \geq 0$
- $\operatorname{Var}\left(\alpha^{\prime} x_{i}\right)=0 \Leftrightarrow \underbrace{\alpha^{\prime} x_{i}}_{r . v .}$ constant
- Therefore, $\operatorname{Var}\left(x_{i}\right)$ is nonsingular if and only if no linear combination of x_{i} is constant (except if $\alpha=0$)
- $\frac{1}{n} \tilde{X}^{\prime} \tilde{X}=\operatorname{Var}_{\text {emp }}(\tilde{X}) \xrightarrow{p} \operatorname{Var}\left(x_{i}\right)$ [under iid assumption]
- Remark. $y_{i}=a^{0}+x_{i}^{\prime} b^{0}+u_{i}$
- $E u_{i}=0$
- $E\left(u_{i} x_{i}\right)=0$ or $\operatorname{Cov}\left(x_{i}, u_{i}\right)=0$
- a^{0}, b^{0} are defined by the above
- These are not assumptions
- $E L\left(y_{i} \mid x_{i}\right)$ is the best linear predictor of y_{i} as an affine combination of x_{i}; that is, it is the solution of the minimization of

$$
E\left[\left(y_{i}-E L\left(y_{i} \mid x_{i}\right)\right)^{2}\right]=E\left[\left(y_{i}-a-x_{i}^{\prime} b\right)^{2}\right]
$$

- Remark. $E\left(y_{i} \mid x_{i}\right)$ is the best predictor of y_{i} as a function of x_{i}; that is, it is the solution of the minimization of

$$
E\left[\left(y_{i}-f\left(x_{i}\right)\right)^{2}\right], \quad y_{i}=f\left(x_{i}\right)+w_{i}, \quad\left\{\begin{array}{l}
E w_{i}=0 \\
\operatorname{Cov}\left(w_{i}, g\left(x_{i}\right)\right)=0, \quad \forall g
\end{array}\right.
$$

Claim: the solution of the minimization problem is

$$
\left(y_{i}-E\left(y_{i} \mid x_{i}\right)\right) \perp g\left(x_{i}\right), \quad \forall g
$$

Proof. Consider

$$
\begin{gathered}
E\left(y_{i} g\left(x_{i}\right)-E\left(y_{i} \mid x_{i}\right) g\left(x_{i}\right)\right) \stackrel{?}{=} 0 \\
\Rightarrow \quad E\left(y_{i} g\left(x_{i}\right)\right)-E\left[E\left(y_{i} g\left(x_{i}\right) \mid x_{i}\right)\right]=E\left(y_{i} g\left(x_{i}\right)\right)-E\left(y_{i} g\left(x_{i}\right)\right)=0
\end{gathered}
$$

- Corollary 1. $E L\left(y_{i} \mid x_{i}\right)=E\left(y_{i} \mid x_{i}\right)$ if and only if $E\left(y_{i} \mid x_{i}\right)$ is affine with respect to x_{i}.
- Corollary 2.

$$
E L\left\{E\left(y_{i} \mid x_{i}\right) \mid x_{i}\right\}=E L\left(y_{i} \mid x_{i}\right)
$$

Proof. Need to show that

$$
[\underbrace{E\left(y_{i} \mid x_{i}\right)}_{\text {what I project }}-\underbrace{E L\left(y_{i} \mid x_{i}\right)}_{\begin{array}{c}
\text { candidate for } \\
\text { projection }
\end{array}} \perp \perp\left(1, x_{i}\right)
$$

Introduce y_{i} :

$$
\underbrace{\left[E\left(y_{i} \mid x_{i}\right)-y_{i}\right]}_{\perp\left(1, x_{i}\right)}-\underbrace{\left[y_{i}-E L\left(y_{i} \mid x_{i}\right)\right]}_{\perp\left(1, x_{i}\right)}
$$

* Final comments.
$>$ Exogeneity assumption in $y_{i}=a^{0}+x_{i}^{\prime} b^{0}+u_{i}$:
- Strict exogeneity: $E\left(u_{i} \mid x_{i}\right)=0$
- Weaker exogeneity: $E\left(u_{i}\right)=0, \operatorname{Cov}\left(f\left(x_{i}\right), u_{i}\right)=0$ for all f
$>$ Is it true that $E\left(y_{i} \mid x_{i}\right)$ is linear?
- True with: $E\left(u_{i} \mid x_{i}\right)=0 \Rightarrow x_{i}$ and u_{i} are stochastically independent
$>$ What do we do when it is not true (i.e. $E\left(y_{i} \mid x_{i}\right)$ is not linear)?
- Add some terms to account for nonlinear effects, e.g. $x_{i k}^{2}$ or $x_{i k} x_{i \ell}$, or more complicated functional form

Large Sample Theory (Chapter 2.3)

* Maintained assumption: $\left(y_{i}, x_{i}\right)$ are jointly identically distributed (i.d.)
$>$ Consequence: $\left(y_{i}, x_{i}, u_{i}\right)$ are jointly identically distributed
$>$ Remark. $\operatorname{Var}\left(u_{i}\right)=\sigma^{2}$, which is a constant (i.e. independent of i). But there can be heterogeneity at the conditional level, i.e.

$$
\operatorname{Var}\left(u_{i} \mid x_{i}\right)=\sigma^{2}\left(x_{i}\right)
$$

- With the assumption $E\left(u_{i} \mid x_{i}\right)=0$, we can write:

$$
\operatorname{Var}\left(u_{i}\right)=E\left(u_{i}^{2}\right)=E\left(E\left(u_{i}^{2} \mid x_{i}\right)\right)=E\left(\operatorname{Var}\left(u_{i} \mid x_{i}\right)\right) \Rightarrow \sigma^{2}=E\left(\sigma^{2}\left(x_{i}\right)\right)
$$

* Law of Large Numbers (LLN). Consider $z_{i}, i \in \mathbb{N}$, i.d. and integrable (i.e. $E\left|z_{i}\right|<\infty$).
$>$ LLN:

$$
\frac{1}{n} \sum_{i=1}^{n} z_{i}=\bar{z}_{n} \rightarrow E z_{i}=E z_{1}
$$

Theorem 1 (SLLN). Let $\left(z_{i}\right)_{i \in \mathbb{N}}$ iid and integrable.

$$
\bar{z}_{n} \xrightarrow{\text { a.s. }} E z_{i}
$$

Recall the definition of almost sure convergence:

$$
P\left(\lim _{n \rightarrow \infty}\left(\bar{z}_{n}-E z_{i}\right)=0\right)=1
$$

$>L^{2}-$ LLN $:$

$$
\bar{z}_{n} \xrightarrow{L^{2}} E z_{i}
$$

Recall the definition of L^{2} convergence:

$$
w_{n} \xrightarrow{L^{2}} w_{0} \Leftrightarrow E\left(w_{n}-w_{0}\right)^{2} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

This requires w_{n} to be L^{2} integrable.

- Note:

$$
E\left(w_{n}-w_{0}\right)^{2}=\underbrace{\operatorname{Var}\left(w_{n}-w_{0}\right)}_{\geq 0}+\underbrace{\left[E\left(w_{n}-w_{0}\right)\right]^{2}}_{\geq 0}
$$

So

$$
E\left(w_{n}-w_{0}\right)^{2} \underset{n \rightarrow \infty}{\longrightarrow} 0 \Leftrightarrow\left\{\begin{array}{l}
\operatorname{Var}\left(w_{n}-w_{0}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \\
E\left(w_{n}-w_{0}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{array}\right.
$$

In our case: $E z_{i}$ is a constant.

$$
\begin{aligned}
& \bar{z}_{n} \xrightarrow{L^{2}} E z_{i} \Leftrightarrow \operatorname{Var}\left(\bar{z}_{n}\right) \rightarrow 0 \\
& \operatorname{Var}\left(\bar{z}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} z_{i}\right) \\
&=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(z_{i}\right)+\frac{1}{n^{2}} \sum_{\substack{i, j=1 \\
i \neq j}}^{n} \operatorname{Cov}\left(z_{i}, z_{j}\right)
\end{aligned}
$$

$$
=\underbrace{\frac{\sigma^{2}}{n}}_{n \rightarrow \infty}+\frac{2}{n^{2}} \underbrace{\sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(z_{i}, z_{j}\right)}_{n(n-1) \text { terms }}
$$

$>$ Theorem $2\left(L^{2}\right.$-LLN $)$. If $\left(z_{i}\right)_{i \in \mathbb{N}}$ such that $E z_{i}^{2}<\infty$, and $E z_{i}$ and $\operatorname{Var}\left(z_{i}\right)$ independent on i, then

$$
\bar{z}_{n} \xrightarrow{L^{2}} E z_{i} \Leftrightarrow \frac{1}{n^{2}} \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(z_{i}, z_{j}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

$>$ Theorem 3. Both the SLLN and L^{2}-LLN imply the WLLN (convergence in probability).

- Note that there is no clear logical relation between almost sure convergence and L^{2} convergence.
* Consistency of OLS estimators (i.e. estimator of b and σ^{2})

$$
y_{i}=x_{i}^{\prime} b+u_{i}, \quad \text { with }\left\{\begin{array}{l}
\left(y_{i}, x_{i}\right) \text { i.d. } \\
E\left(u_{i} \mid x_{i}\right)=0 \\
\sigma^{2}=\operatorname{Var}\left(u_{i}\right)
\end{array}\right.
$$

> We know 1 estimator, i.e. the OLS, by solving

$$
\underbrace{X^{\prime}}_{K \times n}(y-X b)=0
$$

Want to compare the OLS estimator with the IV-estimation

$$
W^{\prime}(y-X b)=0
$$

where $W=\left[\begin{array}{llll}w^{1} & w^{2} & \cdots & w^{H}\end{array}\right]$

- OLS is a special case for IV-estimation.
> Motivation:

$$
E\left(y_{i}-x_{i}^{\prime} b^{0} \mid x_{i}\right)=0 \Leftrightarrow E\left[f\left(x_{i}\right)\left(y_{i}-n_{i}^{\prime} b^{0}\right)\right]=0, \quad \forall f
$$

where b^{0} is the true unknown value.

$$
f_{h}(\cdot), \quad h=1, \ldots, H, \quad \text { s.t. } w_{i h}=f_{h}\left(x_{i}\right)
$$

The IV Estimator

* Consider a matrix

$$
W_{(n \times H)}=\left[\begin{array}{llll}
w^{1} & w^{2} & \cdots & w^{H}
\end{array}\right]
$$

If I assume:

$$
\begin{aligned}
E\left(u_{i} \mid x_{i}\right)=0 & \Leftrightarrow E\left(y_{i}-x_{i}^{\prime} b \mid x_{i}\right)=0 \\
& \Leftrightarrow E\left[f\left(x_{i}\right)\left(y_{i}-x_{i}^{\prime} b\right)\right]=0, \quad \forall f
\end{aligned}
$$

If I define $w_{i h}=f_{h}\left(x_{i}\right)$.

* Can we find \hat{b}_{w} such that

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left[w_{i n}\left(y_{i}-x_{i}^{\prime} b\right)\right]=0, \quad \forall h & \Leftrightarrow W^{\prime}\left(y-X \hat{b}_{w}\right)=0 \\
& \Leftrightarrow \underbrace{W^{\prime} X}_{H \times K} \hat{b}_{w}=W^{\prime} y
\end{aligned}
$$

Need $H \geq K$, because otherwise there will be more parameters than equations. If the number of instruments is the same as the regressors, then the matrix $W^{\prime} X$ is invertible. However, if there are more instruments than regressors, then we need to use "pseudo-inverse".
$>$ Consider a left pseudo-inverse of $W^{\prime} X$, call it Π_{n} :

$$
\underbrace{\Pi_{n}}_{K \times H}\left(W^{\prime} X\right)=I_{K}
$$

* Definition. Under the maintained assumptions

$$
\begin{aligned}
\operatorname{Rank}(W) & =H \\
\operatorname{Rank}\left(W^{\prime} X\right) & =K
\end{aligned}
$$

Define:

$$
\hat{b}_{w}=\Pi_{n} W^{\prime} y
$$

where Π_{n} is as defined above.
$>$ Example of matrix Π_{n}. Let Ω be a positive definite matrix of size H

$$
\Pi_{n}=\underbrace{(\underbrace{X^{\prime} W}_{K \times H} \underbrace{\Omega}_{H \times H} \underbrace{\Omega} \underbrace{\prime} X}_{K \times K})^{-1} \underbrace{X^{\prime} W}_{K \times H} \underbrace{\Omega}_{H \times H}
$$

The inverse exists because whenever a full-rank matrix is multiplied by another full-rank matrix, the product is still full rank.

Note that this is a class of pseudo-inverse, because a different Ω will produce a different Π_{n}.

Special case where $H=K$:

$$
\begin{gathered}
\Pi_{n}=\left(W^{\prime} X\right)^{-1} \Omega^{-1}\left(X^{\prime} W\right)^{-1}\left(X^{\prime} W\right) \Omega=\left(W^{\prime} X\right)^{-1} \\
\quad \Rightarrow \hat{b}_{w}=\left(W^{\prime} X\right)^{-1} W^{\prime} y
\end{gathered}
$$

If we choose $W=X$, then we'll get the OLS estimate.
In general, $H>K$, so there is no unique $\hat{b}_{w} \rightarrow$ we can talk about optimal choice of Ω.

* Is \hat{b}_{w} consistent? Recall the model $y=X b^{0}+u$.

$$
\begin{aligned}
\hat{b}_{w}=\Pi_{n} W^{\prime} y \Rightarrow \hat{b}_{w} & =\Pi_{n} W^{\prime}\left[X b^{0}+u\right] \\
& =\Pi_{n} W^{\prime} X b^{0}+\Pi_{n} W^{\prime} u \\
& =b^{0}+\underbrace{\Pi_{n} W^{\prime} u}_{\stackrel{?}{\rightarrow} 0}
\end{aligned}
$$

$>$ Assumption 1. $n \Pi_{n} \xrightarrow{p} \Pi$, where Π is a fixed full-rank matrix.

- Why is this assumption reasonable?
- Case where $H=K$.

$$
\Pi_{n}=\left(W^{\prime} X\right)^{-1} \Rightarrow n \Pi_{n}\left[\frac{W^{\prime} X}{n}\right]^{-1}
$$

Remember that W^{\prime} is $(H \times n)$ and X is $(n \times K)$. By LLN:

$$
\frac{W^{\prime} X}{n}=\frac{1}{n} \sum_{i=1}^{n} w_{i} x_{i}^{\prime} \xrightarrow{p} E\left[w_{i} x_{i}^{\prime}\right]
$$

Here, Assumption 1 is equivalent to the LLN for $\left(W^{\prime} X\right)$ (or $w_{i} x_{i}^{\prime}$).

- Case where $H>K$.

$$
n \Pi_{n}=\left(\frac{X^{\prime} W}{n} \Omega \frac{W^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} W}{n} \Omega
$$

where

$$
\frac{X^{\prime} W}{n} \xrightarrow{p} E\left(x_{i} w_{i}^{\prime}\right), \quad \frac{W^{\prime} X}{n} \xrightarrow{p} E\left(w_{i} x_{i}^{\prime}\right)
$$

So, same here, we need LLN for $\left(w_{i} x_{i}^{\prime}\right)$

- In sum, the assumption is used to

$$
\begin{aligned}
\hat{b}_{w} & =b^{0}+\Pi_{n} W^{\prime} u \\
& =b^{0}+\left(n \Pi_{n}\right)\left(\frac{W^{\prime} u}{n}\right)
\end{aligned}
$$

$>$ Assumption 2. The WLLN for $\left(w_{i} u_{i}\right)$

$$
\frac{1}{n} W^{\prime} u \xrightarrow{p} E\left(w_{i} u_{i}\right)
$$

$>$ Assumption 3. $E\left(w_{i} u_{i}\right)=0$. That is, w_{i} 's are valid instruments. Non-correlation between w_{i} and u_{i}
Therefore, $\hat{b}_{w} \xrightarrow{p} b^{0}$.
Theorem. Any IV estimator $\hat{b}_{w}=\Pi_{n} W^{\prime} y$ such that

- $\quad \Pi_{n} W^{\prime} X=I_{K}$
- $n \Pi_{n} \xrightarrow{p} \Pi$
- W are valid instruments
- WLLN for $\left(w_{i} u_{i}\right)_{i}$
are satisfied is weakly consistent, i.e. $\hat{b}_{w} \xrightarrow{p} b^{0}$.
* Consistent estimator of σ^{2}.

$$
\sigma^{2}=E\left(u_{i}^{2}\right)=\operatorname{plim}\left[\frac{1}{n} \sum_{i=1}^{n} u_{i}^{2}\right]
$$

$>$ The problem here is that u_{i} 's are not observed.
$>\hat{u}_{i}$ are residuals and observed.

* Theorem. Given WLLN for $\left(u_{i}^{2}\right),\left(x_{i} x_{i}^{\prime}\right)$, and $\left(x_{i} u_{i}\right)$. If \hat{b} is a consistent estimator of b^{0}, then

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} \xrightarrow{p} \sigma^{2}
$$

where $\hat{u}_{i}=y_{i}-x_{i}^{\prime} \hat{b}$.
$>$ Proof.

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} \hat{b}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}^{\prime} b^{0}+u_{i}-x_{i}^{\prime} \hat{b}\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} u_{i}^{2}+\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}\left(b^{0}-\hat{b}\right)^{2}+\frac{2}{n} \sum_{i=1}^{n}\left[u_{i} x_{i}^{\prime}\left(b^{0}-\hat{b}\right)\right] \\
& \xrightarrow{p} \sigma^{2}
\end{aligned}
$$

$>$ Remark. The above estimator $\hat{\sigma}^{2}$ is consistent, but usually biased in small/finite samples.
$>$ For OLS,

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} \leq \frac{1}{n} \sum_{i=1}^{n} u_{i}^{2} \Rightarrow E \hat{\sigma}^{2}<\sigma^{2}
$$

- Proof.

$$
\sum_{i=1}^{n} \hat{u}_{i}^{2}=\|\hat{u}\|^{2}=\left\|M_{X} y\right\|^{2}=\left\|M_{X} u\right\|^{2} \leq\|u\|^{2}
$$

The last inequality comes from the orthogonal projection. We have equality if and only if $M_{X} u=u$.

$$
E\left\|M_{X} u\right\|^{2}<E\|u\|^{2} \Leftrightarrow n E \hat{\sigma}^{2}<n \sigma^{2}
$$

* What is the difference between the two?

$$
E\left[\left\|M_{X} u\right\|^{2} \mid X\right]=E\left[u^{\prime} M_{X}^{\prime} M_{X} u \mid X\right]
$$

$$
\begin{aligned}
& =E\left[u^{\prime} M_{X} u \mid X\right] \\
& =E\left[\operatorname{tr}\left(u^{\prime} M_{X} u\right) \mid X\right] \\
& =\operatorname{tr}\left(E\left[M_{X} u^{\prime} u \mid X\right]\right) \\
& =\operatorname{tr}(M_{X} \underbrace{E\left(u^{\prime} u \mid X\right)}_{\sigma^{2}}) \\
& =(n-K) \sigma^{2}
\end{aligned}
$$

For OLS estimator under the assumption of spherical variance (i.e. $E\left(u^{\prime} u \mid X\right)=\sigma^{2}$),

$$
E\left(\|\hat{u}\|^{2} \mid X\right)=(n-K) \sigma^{2} \Rightarrow \frac{1}{n-K}\|\hat{u}\|^{2}=\frac{1}{n-K} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

So the unbiased estimator $\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$ underestimates σ^{2}.
When $n \gg(n-K)$ and n become closer and closer to each other.

Spherical and Non-Spherical Variance of the Error Term

* Recall that $\operatorname{Var}(u)=\sigma^{2} I$. Today we want to consider the "non-spherical" case.
$>$ Can we standardize the multivariate u ?

$$
\begin{gathered}
u_{n, 1} \sim \mathcal{N}(0, \Omega) \\
\Omega=\Omega^{1 / 2} \Omega^{1 / 2^{\prime}}
\end{gathered}
$$

* Any symmetric matrix Ω can be decomposed as:

$$
\Omega=P \Lambda P^{\prime}
$$

where $P P^{\prime}=I$ (i.e. P is orthogonal matrix) and Λ is diagonal.
$>$ Note that Ω is symmetric but also positive definite. So all its eigenvalues are strictly positive; that is, $\Lambda^{1 / 2}$ is well defined.

$$
\begin{aligned}
P \Lambda P^{\prime} & =P \Lambda^{1 / 2} \Lambda^{1 / 2} P^{\prime} \\
& =\left(P \Lambda^{1 / 2}\right)\left(\Lambda^{1 / 2} P^{\prime}\right) \\
& =\Omega^{1 / 2} \Omega^{1 / 2^{\prime}}
\end{aligned}
$$

Notation: $\Omega^{-1 / 2}=\left(\Omega^{1 / 2}\right)^{-1}$. Then,

$$
\begin{aligned}
& \operatorname{Var}\left(\Omega^{-1 / 2} u\right)=\Omega^{-1 / 2} \operatorname{Var}(u) \Omega^{-1 / 2^{\prime}} \\
&=\Omega^{-1 / 2} \Omega \Omega^{-1 / 2^{\prime}} \\
&=\Omega^{-1 / 2} \Omega^{1 / 2} \Omega^{1 / 2^{\prime}} \Omega^{-1 / 2^{\prime}} \\
&=I \\
& \Rightarrow \Omega^{-1 / 2} u \sim \mathcal{N}(0, I) \\
& \Rightarrow\left(\Omega^{-1 / 2} u\right)^{\prime}\left(\Omega^{-1 / 2} u\right)=u^{\prime} \Omega^{-1} u \sim \chi^{2}(n)
\end{aligned}
$$

$>$ Remark. The shape of a confidence region (because we're considering a vector)

$$
P\left(u^{\prime} \Omega^{-1} u \leq q_{1-\alpha}\right)=\alpha
$$

where q is the appropriate quantile of $\chi^{2}(n)$ distribution.

- In the spherical case: $\Omega=\sigma^{2} I$,

$$
P\left(\frac{u^{\prime} u}{\sigma^{2}} \leq q_{1-\alpha}\right)=\alpha
$$

\rightarrow shape $=$ sphere centered around 0 with ray $\sigma \sqrt{q_{1-\alpha}}$

- More generally,

$$
\Omega=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right) \Rightarrow P\left(\sum_{i=1}^{n} \frac{u_{i}^{2}}{\sigma_{i}^{2}} \leq q_{1-\alpha}\right)=\alpha
$$

\rightarrow shape $=$ ellipse centered around 0 .

Asymptotic Probability Distribution

* Reminder:
$>$ Suppose $z_{i_{H, 1}}$ identically distributed. Then, WLLN says

$$
\bar{z}_{n}=\frac{1}{n} \sum_{i=1}^{n} z_{i} \xrightarrow{p} E z_{i}=\mu
$$

$>$ If $\operatorname{Var}\left(z_{i}\right)<\infty$ and z_{i} iid, then

$$
\operatorname{Var}\left(\bar{z}_{n}\right)=\frac{1}{n} \operatorname{Var}\left(z_{i}\right)
$$

Suppose we rescale by $\alpha \neq 1 / 2$,

$$
n^{\alpha}\left(\bar{z}_{n}-\mu\right) \rightarrow \begin{cases}0 & \text { if } \alpha<\frac{1}{2} \\ \infty & \text { if } \alpha>\frac{1}{2}\end{cases}
$$

* Central Limit Theorem (Lindeberg-Levy).

If $z_{i_{H, 1}}$ is iid with $E z_{i}=\mu$ and $\operatorname{Var}\left(z_{i}\right)=\Sigma_{H, H}$, then

$$
\sqrt{n}\left(\bar{z}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}(0, \Sigma) .
$$

$>$ Remark. Convergence in distribution. $V_{n} \xrightarrow{d} V$ if and only if we have something like

$$
P\left(V_{n} \in A\right) \underset{n \rightarrow \infty}{\longrightarrow} P(V \in A)
$$

If $\operatorname{dim}\left(V_{n}\right)=1$, then
$V_{n} \xrightarrow{d} V \Leftrightarrow \forall x$ where the function is well-defined $\left\{\begin{array}{c}x \rightarrow P(V \leq x) \\ F_{V_{n}}(x) \rightarrow F_{V}(x)\end{array}\right.$
or $P\left(V_{n} \leq x\right) \rightarrow P(V \leq x)$
Recall that

$$
V_{n} \xrightarrow{p} V \underset{\neq}{\Rightarrow} V_{n} \xrightarrow{d} V .
$$

When V is deterministic,

$$
V_{n} \xrightarrow{p} V \Leftrightarrow V_{n} \xrightarrow{d} V
$$

because in this case the joint distributions of V_{n} and V are known.

$$
\left\{\begin{array}{cc}
V_{n} \xrightarrow{d} V & \text { (not deterministic) } \\
Z_{n} \xrightarrow{d} a & \text { (deterministic) }
\end{array} \Rightarrow\binom{V_{n}}{Z_{n}} \xrightarrow{d}\binom{V}{a}\right.
$$

But (!!!)

$$
\left\{\begin{array}{ll}
V_{n} \xrightarrow{d} V & (r . v .) \\
Z_{n} \xrightarrow{d} a & (r . v .)
\end{array} \Leftarrow\binom{V_{n}}{Z_{n}} \xrightarrow{d}\binom{V}{Z}\right.
$$

* Corollary.

$$
\left.\begin{array}{rl}
z_{n} & \xrightarrow{d} \underset{\mathcal{N}}{\mathcal{N}}(0, \Sigma) \\
A_{n} \xrightarrow{p} A
\end{array}\right\} \Rightarrow A_{n} z_{n} \xrightarrow{d} \mathcal{N}\left(0, A \Sigma A^{\prime}\right)
$$

* Asymptotic distribution of IV estimation.

$$
\begin{gathered}
\hat{b}_{W}=\Pi_{n} W^{\prime} y, \quad \Pi_{n} \text { s.t. } \Pi_{n} W^{\prime} X=I \\
\Rightarrow \hat{b}_{W}=b^{0}+\Pi_{n} W^{\prime} u, \quad \because y=X b^{0}+u
\end{gathered}
$$

And

$$
\sqrt{n} \Pi_{n} W^{\prime} u=\underbrace{n \Pi_{n}}_{\rightarrow \Pi} \underbrace{\frac{W^{\prime} u}{\sqrt{n}}}_{=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_{i} u_{i}}
$$

$>$ Assume: $\left(w_{i}, y_{i}, x_{i}\right)$ jointly iid, and w_{i} are valid instruments

$$
\begin{aligned}
\operatorname{Var}\left(w_{i} u_{i}\right) & =E\left[\left(w_{i} u_{i}\right)\left(w_{i} u_{i}\right)^{\prime}\right] \\
\Sigma_{W} & =E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)
\end{aligned}
$$

Theorem.

$$
\sqrt{n}\left(\hat{b}_{W}-b^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \Pi \Sigma_{W} \Pi^{\prime}\right)
$$

- Interpretation. For n large enough, the probability distribution of \hat{b}_{W} can be approximated by $\mathcal{N}\left(b^{0}, \frac{1}{n} \Pi \Sigma_{W} \Pi^{\prime}\right)$.
- Can assess this approximation by Monte Carlo.
* Lemma (in Davidson's Book).

$$
\min _{\Pi}\left(\Pi \Sigma \Pi^{\prime}\right), \quad \text { s.t. } \Pi L=I_{K} \text { for some given matrix } L
$$

where $\Sigma_{H, H}$ is positive definite, $L_{H, K}$ has rank K. The solution to the above problem is

$$
\Pi^{*}=\left(L^{\prime} \Sigma^{-1} L\right)^{-1} L^{\prime} \Sigma^{-1}
$$

$>$ Remark. Π^{*} is the solution of the minimization if and only if

$$
\begin{aligned}
& \Pi^{*} L=I \\
& \Pi^{*} \Sigma \Pi^{*} \ll \Pi \Sigma \Pi, \quad \forall \Pi: \Pi L=I
\end{aligned}
$$

- What does "<<" mean? Consider a vector $v=\alpha+\beta$, where α and β are uncorrelated.

$$
\operatorname{Var}(v)=\operatorname{Var}(\alpha)+\operatorname{Var}(\beta)
$$

We say

$$
\begin{aligned}
\operatorname{Var}(v) \gg \operatorname{Var}(\alpha) & \Leftrightarrow(\operatorname{Var}(v)-\operatorname{Var}(\alpha)) \text { is } \mathrm{psd} \\
& \Leftrightarrow \forall x: x^{\prime}(\operatorname{Var}(v)-\operatorname{Var}(\alpha)) x \geq 0
\end{aligned}
$$

- In our case,

$$
\operatorname{Var}\left[\sqrt{n}\left(\hat{b}_{W}-b^{0}\right)\right]=\Omega
$$

Suppose there is another estimator b^{*} such that

$$
\operatorname{Var}\left[\sqrt{n}\left(b^{*}-b^{0}\right)\right]=\Omega^{*}
$$

Then,

$$
\begin{aligned}
\Omega^{*} \ll \Omega & \Leftrightarrow \forall a: a^{\prime}\left(\Omega-\Omega^{*}\right) a \geq 0 \\
& \Leftrightarrow \forall a: a^{\prime} \Omega a=\operatorname{Var}\left[\sqrt{n} a\left(\hat{b}_{W}-b^{0}\right)\right] \geq \operatorname{Var}\left[\sqrt{n} a\left(b^{*}-b^{0}\right)\right]=a^{\prime} \Omega^{*} a
\end{aligned}
$$

i.e. b^{*} is better than \hat{b}_{W} in terms of variance.

Proof of the lemma. Suppose $\Pi=\Pi^{*}+D$. We have

$$
\Pi L=\Pi^{*} L=I \Rightarrow D L=0
$$

Then,

$$
\begin{aligned}
\Pi \Sigma \Pi^{\prime} & =\left(\Pi^{*}+D\right) \Sigma\left(\Pi^{*}+D\right)^{\prime} \\
& =\Pi^{*} \Sigma \Pi^{* \prime}+\Pi^{*} \Sigma D^{\prime}+D \Sigma \Pi^{* \prime}+D \Sigma D^{\prime}
\end{aligned}
$$

We want to show that

$$
\Pi \Sigma \Pi^{\prime}-\Pi^{*} \Sigma \Pi^{* \prime} \gg 0 \Leftrightarrow \Pi^{*} \Sigma D^{\prime}+D \Sigma \Pi^{* \prime}+D \Sigma D^{\prime} \gg 0
$$

Note that

$$
D \Sigma D^{\prime} \gg 0 \Leftarrow \alpha^{\prime}\left(D \Sigma D^{\prime}\right) \alpha=\left(D^{\prime} \alpha\right)^{\prime} \Sigma\left(D^{\prime} \alpha\right) \geq 0
$$

It is enough to show that

$$
\Pi^{*} \Sigma D^{\prime}+D \Sigma \Pi^{* \prime} \gg 0
$$

However, this is not easy, so we would instead show that

$$
\Pi^{*} \Sigma D^{\prime}+D \Sigma \Pi^{* \prime}=0
$$

Asymptotic Variance of IV Estimator

* Recall from last time
$>$ Theorem.

$$
\sqrt{n}\left(\hat{b}_{W}-b^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \Pi \Sigma_{W} \Pi^{\prime}\right)
$$

$>$ Lemma.

$$
\min _{\Pi}\left(\Pi \Sigma \Pi^{\prime}\right), \quad \text { s.t. } \Pi L=I_{K}
$$

with Σ positive definite and $\operatorname{rank}(L)=K$.
$>$ Proof of Lemma.

$$
\begin{aligned}
& \Pi=\Pi^{*}+D \Rightarrow D L=0 \\
\Pi \Sigma \Pi^{\prime}= & \left(\Pi^{*}+D\right) \Sigma\left(\Pi^{*}+D\right)^{\prime} \\
= & \Pi^{*} \Sigma \Pi^{* \prime}+D \Sigma \Pi^{* \prime}+\Pi^{*} \Sigma D^{\prime}+D \Sigma D^{\prime}
\end{aligned}
$$

To conclude that $\Pi \Sigma \Pi^{\prime}-\Pi^{*} \Sigma \Pi^{* \prime} \gg 0$ (because $D \Sigma D^{\prime} \gg 0$ and $\Pi^{*} \Sigma \Pi^{* \prime} \gg 0$), it is enough to show that

$$
D \Sigma \Pi^{* \prime}+\Pi^{*} \Sigma D^{\prime}=0
$$

But since $\left(D \Sigma \Pi^{* \prime}\right)^{\prime}=\Pi^{*} \Sigma D$, it is enough to show that

$$
D \Sigma \Pi^{* \prime}=0 \quad \text { or } \quad \Pi^{*} \Sigma D^{\prime}=0
$$

Idea: define Π^{*} such that

$$
\Pi^{*} \Sigma D^{\prime}=0
$$

Note that $D L=L^{\prime} D^{\prime}=0$. Then, for any matrix A, define

$$
\Pi^{*}:=A L^{\prime} \Sigma^{-1}
$$

such that $\Pi^{*} \Sigma D^{\prime}=0$. We also need to make sure Π^{*} as defined is a valid candidate, i.e.

$$
\Pi^{*} L=I_{K} \Leftrightarrow A L^{\prime} \Sigma L=I_{K}
$$

where the matrix $L^{\prime} \Sigma L$ has full rank and thus invertible. Therefore, let

$$
A=\left(L^{\prime} \Sigma L\right)^{-1} .
$$

Therefore, the solution to the minimization problem is

$$
\Pi^{*}=\left(L^{\prime} \Sigma L\right)^{-1} L^{\prime} \Sigma^{-1}
$$

This completes the proof.

* The "best" IV estimator (i.e. the one with the smallest asymptotic variance).

$$
\Pi^{*}=\left\{E\left(x_{i} w_{i}^{\prime}\right)\left[E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)\right]^{-1} E\left(x_{i} w_{i}^{\prime}\right)^{\prime}\right\}^{-1} E\left(x_{i} w_{i}^{\prime}\right)\left[E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)\right]^{-1}
$$

Thus,

$$
\operatorname{Var}\left(\sqrt{n} \hat{b}_{W}^{*}\right)=\left[E\left(x_{i} w_{i}^{\prime}\right) \Sigma_{W} E\left(w_{i} x_{i}^{\prime}\right)\right]^{-1}
$$

with $\Sigma_{W}=E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)$.
So the optimal IV estimator (for given W):

$$
\hat{b}_{W}^{*}=\Pi_{n}^{*} W^{\prime} y
$$

where $\Pi_{n}^{*}=\left[\left(X^{\prime} W\right) \hat{\Sigma}^{-1}\left(W^{\prime} X\right)\right]^{-1} X^{\prime} W \widehat{\Sigma}^{-1}$.
Recall that the difference between Π_{n}^{*} and Π^{*} is that $n \Pi_{n}^{*} \xrightarrow{d} \Pi^{*}$. So to apply LLN,

$$
n \Pi_{n}^{*}=\left[\frac{\left(X^{\prime} W\right)}{n} \widehat{\Sigma}^{-1} \frac{\left(W^{\prime} X\right)}{n}\right]^{-1} \frac{X^{\prime} W}{n} \widehat{\Sigma}^{-1}
$$

Feasible Estimate of the IV Estimator

* Recall optimal IV for given W :

$$
\Pi_{n}=\left[X^{\prime} W \widehat{\Sigma}^{-1} W^{\prime} X\right]^{-1} X^{\prime} W \widehat{\Sigma}^{-1} \quad \text { and } \quad \hat{b}_{W}=\Pi_{n} W^{\prime} y
$$

* Recall $\hat{\Sigma}$ is a consistent estimator of $\Sigma_{W}=E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)$
$>$ Note: it is enough to provide estimate of $a \Sigma_{W}$, e.g. $a \hat{\Sigma}_{W}$
(1) Conditional homoscedasticity
- $w_{i}=f\left(x_{i}\right)$
- Endogeneity: $w_{i} \neq f\left(x_{i}\right)$ because $\neg\left(x_{i} \perp u_{i}\right)$

$$
\Sigma_{W}=E\left[u_{i}^{2} w_{i} w_{i}^{\prime}\right]=E\{\underbrace{E\left(u_{i}^{2} \mid w_{i}\right)}_{\sigma^{2}} w_{i} w_{i}^{\prime}\}=\sigma^{2} E\left[w_{i} w_{i}^{\prime}\right]
$$

Take $\widehat{\Sigma}=\frac{\sigma^{2}}{n} W^{\prime} W$. Then, in the conditional homoscedasticity case

$$
\Pi_{n}=\left(X^{\prime} P_{W} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} \Rightarrow \hat{b}_{W}=\left(X^{\prime} P_{W} X\right)^{-1} X^{\prime} P_{W} y
$$

where $P_{W}=W\left(W^{\prime} W\right)^{-1} W^{\prime}$.

- Remark. This formula is very similar to the Frisch-Waugh, and leads to a 2 -step procedure:
(i) "Projection": $\quad P_{W} X$, i.e. OLS X^{k} onto W
(ii) "OLS": $\quad y$ onto $P_{W} X$

Theorem. 2S-OLS is the optimal IV for given W under conditional homoscedasticity.
$>$ Special case where $w_{i}=f\left(x_{i}\right)$, i.e. X are exogenous.

$$
y=X b+u
$$

Then, we have

$$
\operatorname{Var}(y \mid X)=\operatorname{Var}(u \mid X)=\sigma^{2} I, \quad[\text { spherical }]
$$

$$
\begin{aligned}
\operatorname{Var}\left(\hat{b}_{W} \mid X\right) & =\left(X^{\prime} P_{W} X\right)^{-1} X^{\prime} P_{W} \operatorname{Var}(y \mid X) P_{W} X\left(X^{\prime} P_{W} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} P_{W} X\right)^{-1}
\end{aligned}
$$

- If we want to compare OLS and IV variances:

$$
\begin{aligned}
\operatorname{Var}\left(\hat{b}_{W} \mid X\right) & =\sigma^{2}\left(X^{\prime} P_{W} X\right)^{-1} \\
\operatorname{Var}\left(\hat{b}_{O L S} \mid X\right) & =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

We can conclude that $\operatorname{Var}\left(\hat{b}_{W} \mid X\right)$ is bigger, because whenever we do an orthogonal projection, the length of a vector becomes smaller (norm-wise). So

$$
\begin{aligned}
\left(X^{\prime} P_{W}\right)\left(P_{W} X\right) \ll\left(X^{\prime} X\right) & \Leftrightarrow X^{\prime} \underbrace{\left(M_{W}\right)}_{>0} X \gg 0 \\
& \Rightarrow\left(X^{\prime} P_{W} X\right)^{-1} \gg\left(X^{\prime} X\right)^{-1} .
\end{aligned}
$$

Therefore, OLS is always as good as IV, and sometimes better.

- Why do we do IV then?
- When X are endogenous. [Recall: $w_{i} \neq f\left(x_{i}\right)$ in this case]
- When X are exogenous and conditional homoscedastic:

$$
E\left(u_{i}^{2} \mid x_{i}\right)=\sigma\left(x_{i}\right)
$$

So that we capture some information that is left in the σ^{2}.

* Theorem. If $\hat{u}_{i}=y_{i}-x_{i}^{\prime} \hat{b}$, where \hat{b} is a consistent estimator, then

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} w_{i} w_{i}^{\prime} \rightarrow \Sigma_{W}
$$

under the appropriate LLN.
$>$ Proof.

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} w_{i} w_{i}^{\prime} & =\frac{1}{n} \sum_{i=1}^{n}\left[u_{i}+x_{i}^{\prime}(b-\hat{b})\right]^{2} w_{i} w_{i}^{\prime} \\
& =\frac{1}{n} \sum_{i=1}^{n} u_{i}^{2} w_{i} w_{i}^{\prime}+\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}^{\prime}(b-\hat{b})\right]^{2} w_{i} w_{i}^{\prime}+\frac{2}{n} \sum_{i=1}^{n} u_{i} \underbrace{x_{i}^{\prime}(b-\hat{b})}_{\in \mathbb{R}} w_{i} w_{i}^{\prime}
\end{aligned}
$$

Need LLN for $x_{i} x_{i}^{\prime} w_{i} w_{i}^{\prime}$ and $x_{i} u_{i} w_{i} w_{i}^{\prime}$, and $u_{i}^{2} w_{i} w_{i}^{\prime}$.
This is more restrictive because we need moments of order 4.

Asymptotic Variance (cont'd)

* $\Sigma=E\left[u_{i}^{2} w_{i} w_{i}^{\prime}\right]$ with estimator

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}^{2} w_{i} w_{i}^{\prime}\right)
$$

$>$ Remark. Eicker-White estimator

$$
\widehat{\Sigma}=\frac{1}{n} W^{\prime} \widehat{\Delta} W
$$

where

$$
\widehat{\Delta}=\left(\begin{array}{cccc}
\hat{u}_{1}^{2} & & & 0 \\
& \hat{u}_{2}^{2} & & \\
& & \ddots & \\
0 & & & \hat{u}_{n}^{2}
\end{array}\right)
$$

Coefficient (k, ℓ) of $\hat{\Sigma}$ is

$$
\frac{1}{n} \sum_{i=1}^{n} w_{i k} w_{i \ell} \hat{u}_{i}^{2}
$$

Note that $\widehat{\Delta}$ is not an estimator of Σ.
$>$ The feasible estimator is then,

$$
\hat{b}_{W}=\left(X^{\prime} W \widehat{\Sigma}^{-1} W^{\prime} X\right)^{-1} X^{\prime} W \widehat{\Sigma}^{-1} W^{\prime} y
$$

with $\widehat{\Sigma}=W^{\prime} \widehat{\Delta} W$.

- It has the same asymptotic distribution as the infeasible estimator

$$
b_{W}^{*}=[X^{\prime} W \underbrace{\left(W^{\prime} \Omega W\right)^{-1}}_{\Sigma} W^{\prime} X]^{-1} X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime} y
$$

where $\Omega=\operatorname{Var}(y \mid X)$. The variance of b_{W}^{*} is

$$
\begin{aligned}
\operatorname{Var}\left(b_{W}^{*} \mid X\right) & =\operatorname{Var}(A y \mid X) \\
& =A \operatorname{Var}(y \mid X) A^{\prime} \\
& =A \Omega A^{\prime} \\
& =\left[X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime} X\right]^{-1}
\end{aligned}
$$

where $A=\left[X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime} X\right]^{-1} X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime}$.

* The optimal instruments (i.e. the best matrix W).
$>$ Theorem. $\left[X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime} X\right]^{-1}$ is minimum for $W=\Omega^{-1} X$
- $\Omega^{-1} X$ is the optimal instrument
- $b_{W}^{*}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega y$. This is the generalized least squares (GLS) estimator
- $\operatorname{Var}\left(b_{W}^{*} \mid X\right)=\left(X^{\prime} \Omega^{-1} \mathrm{X}\right)^{-1}$
- Comments:
- GLS is characterized as the optimal IV estimator when $\operatorname{Var}(u \mid X)=\Omega$ and $W=f(X)$
- GLS is infeasible (because Ω is unknown)
- The theorem is also true when Ω is not diagonal.
- Proof. We want to show that, for any W,

$$
\begin{equation*}
X^{\prime} W\left(W^{\prime} \Omega W\right)^{-1} W^{\prime} X \ll X^{\prime} \Omega^{-1} X \tag{*}
\end{equation*}
$$

Note that the optimal W is given by

$$
W^{*}=\Omega^{-1} X=\Omega^{-1 / 2^{\prime}} \underbrace{\Omega^{-1 / 2} X}_{\tilde{X}}
$$

Write any other W as

$$
W=\Omega^{-1 / 2^{\prime}} Z
$$

Then,

$$
\begin{aligned}
(*) & \Leftrightarrow X^{\prime} \Omega^{-1 / 2^{\prime}} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \Omega^{-1 / 2} X \ll X^{\prime} \Omega X \\
& \Leftrightarrow \tilde{X}^{\prime} P_{Z} \tilde{X} \ll \tilde{X}^{\prime} \tilde{X}
\end{aligned}
$$

* Interpretation of GLS:
$>$ IV estimator with $W=\Omega^{-1} X$,

$$
W^{\prime}\left(y-X b_{W}^{*}\right)=0 \Leftrightarrow \underbrace{X^{\prime} \Omega^{-1}}_{\substack{\text { oblique } \\ \text { projection }}}\left(y-X b_{W}^{*}\right)=0
$$

$$
y=X b+u
$$

with $\operatorname{Var}(u \mid X)=\Omega=\Omega^{1 / 2} \Omega^{1 / 2^{\prime}}$

$$
\Rightarrow \Omega^{-1 / 2} y=\Omega^{-1 / 2} X b+\underbrace{\Omega^{-1 / 2} u}_{v}
$$

with $\operatorname{Var}(v \mid X)=I$.
Now that we have spherical errors, we know that OLS is optimal.

$$
\left(X^{\prime} \Omega^{-1 / 2^{\prime}} \Omega^{-1 / 2} X\right)^{-1}\left(X^{\prime} \Omega^{-1 / 2^{\prime}} \Omega^{-1 / 2} y\right)=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

- This is the GLS formula!
- GLS is simply OLS on standardized errors.

Feasible GLS
$>\Omega$ can be

- diagonal, if iid

$$
\Omega=\left(\begin{array}{cccc}
\sigma^{2}\left(x_{1}\right) & & & 0 \\
& \sigma^{2}\left(x_{2}\right) & & \\
0 & & \ddots & \\
0 & & & \sigma^{2}\left(x_{n}\right)
\end{array}\right)
$$

and

$$
\Omega^{-1 / 2} y=\Omega^{-1 / 2} X b+\Omega^{-1 / 2} u \Leftrightarrow\left(\begin{array}{c}
\vdots \\
\frac{y_{i}}{\sigma^{2}\left(x_{i}\right)} \\
\vdots
\end{array}\right)=\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \frac{x_{i k}}{\sigma\left(x_{i}\right)} & \cdots \\
& \vdots &
\end{array}\right) b+\left(\begin{array}{c}
\vdots \\
\frac{u_{i}}{\sigma\left(x_{i}\right)} \\
\vdots
\end{array}\right)
$$

Then, GLS is

$$
\min _{b} \underbrace{\left[\sum_{i=1}^{n}\left(\frac{y_{i}}{\sigma\left(x_{i}\right)}-\frac{x_{i}^{\prime} b}{\sigma\left(x_{i}\right)}\right)^{2}\right]}_{\begin{array}{c}
\text { sum of weighted squares } \\
\text { of residuals }
\end{array}}
$$

This is the WLS (weighted least squares).

- serial correlation, GLS is usually useless.

$$
\Omega^{-1 / 2} y=\Omega^{-1 / 2}\left(\begin{array}{c}
\vdots \\
y_{t} \\
\vdots
\end{array}\right)=\Omega^{-1 / 2} X b+\Omega^{-1 / 2} u
$$

If Ω is not diagonal, then $\tilde{y} \equiv \Omega^{-1 / 2} y$ contains mixture of different observations of y_{t}. This does not make sense.
> Feasible GLS or optimal WLS:

$$
\hat{b}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

Here the Eicker-White does not help because we need an estimator of Ω.
We need some assumptions about the covariance structure of u, e.g.

$$
\sigma^{2}\left(x_{i}\right)=E\left[u_{i}^{2} \mid x_{i}\right]=z_{i}^{\prime} \alpha
$$

where $z_{i}=f\left(x_{i}\right)$.

- Summary:
(1) OLS of y_{i} on $x_{i} \rightarrow \hat{b}$ and \hat{u}_{i}
(2) OLS of \hat{u}_{i}^{2} on $z_{i} \rightarrow \hat{\alpha}$ and $\sigma^{2}\left(x_{i}\right)$
(3) $\min _{b} \sum_{i=1}^{n}\left[\frac{y_{i}-x_{i}^{\prime} b}{\hat{\sigma}\left(x_{i}\right)}\right]^{2} \rightarrow \hat{\hat{b}}$ which is asymptotically equivalent to $b_{G L S}$.

$\underline{\text { Asymptotic Tests }}$

* Wald tests of hypothesis about b :

$$
\begin{gathered}
\sqrt{n}\left(\hat{b}_{W}-b^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, A \operatorname{Var}\left(\hat{b}_{W}\right)\right) \\
H_{0}: \underbrace{g\left(b^{0}\right)}_{(p, 1)}=0, \quad p \leq K
\end{gathered}
$$

Here $g(\cdot)$ is (either linear or non-linear) restrictions on the K elements in \hat{b}_{W}.
$>$ Example 1. Production function

$$
\ln Q_{i}=b_{1}+b_{2} \ln K_{i}+b_{3} \ln L_{i}+u_{i}
$$

Testing constant returns to scale: $H_{0}: b_{2}+b_{3}-1=0$.
$>$ General linear hypothesis:

$$
H_{0}: R b-r=0
$$

where R is $(p, K), r$ is $(p, 1)$, and $\operatorname{rank}(R)=p$. So we are testing p linear restrictions on K parameters. The full column rank assumption means that we're not testing the same restriction twice.

- In Example 1, we have

$$
R=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right), \quad r=1, \quad b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

So we're testing one ($p=1$) restriction on three parameters.
Example 2. Non-linear restrictions.

$$
y_{t}=a+\theta_{0} x_{t}+\theta_{1} x_{t-1}+\theta_{2} x_{t-2}+\cdots+u_{t}
$$

- Introduce the lag-operator L :

$$
y_{t}=a+\sum_{h=0}^{?}\left(\theta_{h} L^{h}\right) x_{t}+u_{t}
$$

where $L^{h} x_{t}=x_{t-h}$. Treating the sum as a polynomial, we have

$$
\left(\theta_{0}+\theta_{1} L+\cdots\right)=\frac{c_{0}+c_{1} L}{1+a_{1} L} \Rightarrow\left(\theta_{0}+\theta_{1} L+\cdots\right)\left(1+a_{1} L\right)=c_{0}+c_{1} L
$$

This means we have a finite number (i.e. 3 in this case) of the restrictions. This allows us to accommodate an infinite number of parameters:

$$
\begin{aligned}
\theta_{0} & =c_{0}, & & {[\text { order } 0] } \\
\theta_{0} a_{1}+\theta_{1} & =c_{1}, & & {[\text { order 1] }} \\
\theta_{1} a_{1}+\theta_{2} & =0, & & {[\text { order 2] }} \\
\theta_{2} a_{1}+\theta_{3} & =0, & & {[\text { order 3] }}
\end{aligned}
$$

- 3 free parameters $\theta_{0}, \theta_{1}, \theta_{2}$
- All the other ones are functions of them:

$$
\theta_{3}=-\theta_{2} a_{1}=-\frac{\theta_{2}^{2}}{\theta_{1}}
$$

which is nonlinear.

- Formulate the hypothesis as

$$
H_{0}: \theta_{3}=\frac{\theta_{2}^{2}}{\theta_{1}} \Leftrightarrow H_{0}: \underbrace{\theta_{1} \theta_{3}-\theta_{2}^{2}}_{g(\theta)=0}=0
$$

Use Taylor expansion:

$$
g(\theta) \approx g\left(\theta^{0}\right)+\frac{\partial g\left(\theta^{0}\right)}{\partial \theta^{\prime}}\left(\theta-\theta^{0}\right)
$$

where θ^{0} is a vector of the true values.
> General case:

$$
\begin{aligned}
g: \mathbb{R}^{K} & \rightarrow \mathbb{R}^{p} \\
b & \mapsto g(b)
\end{aligned}
$$

Then,

$$
\frac{\partial g_{(p, 1)}}{\partial b_{(p, K)}^{\prime}}=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & \frac{\partial g_{i}}{\partial b_{k}} & \cdots \\
& \vdots &
\end{array}\right]
$$

Recall that

$$
\left(\frac{\partial g}{\partial b^{\prime}}\right)^{\prime}=\frac{\partial g^{\prime}}{\partial b}
$$

We require that

$$
\operatorname{rank}\left(\frac{\partial g\left(b^{0}\right)}{\partial b^{\prime}}\right)=p
$$

Asymptotic Testing

* We have some estimator \hat{b}_{W} of the true parameter b^{0}, and

$$
\sqrt{n}\left(\hat{b}_{W}-b^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, A \operatorname{Var}\left(\hat{b}_{W}\right)\right)
$$

$>H_{0}: g\left(b^{0}\right)=0$, where $g(\cdot)$ is a vector of size p

- If g is linear, $g\left(b^{0}\right)=R b^{0}$ with $\operatorname{rank}(R)=p$
- If g is nonlinear, we require $\operatorname{rank}\left(\frac{\partial g\left(b^{0}\right)}{\partial b^{\prime}}\right)=p$
* What is the pdf of $g\left(\hat{b}_{W}\right)$?

$>$ Delta method.

Suppose that $\sqrt{n}\left(\hat{b}_{W}-b^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, A \operatorname{Var}\left(\hat{b}_{W}\right)\right)$, and that $g \in \mathcal{C}^{1}$. Then,

$$
\sqrt{n}\left(g\left(\hat{b}_{W}\right)-g\left(b^{0}\right)\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{\partial g\left(b^{0}\right)}{\partial b^{\prime}} A \operatorname{Var}\left(\hat{b}_{W}\right) \frac{\partial g^{\prime}\left(b^{0}\right)}{\partial b}\right)
$$

- Proof. For simplicity, assume that we're in dimension one, i.e. $p=1$. We use instead of the Taylor expansion, the mean value theorem.

$$
g\left(\hat{b}_{W}\right)=g\left(b^{0}\right)+\frac{\partial g(\tilde{b})}{\partial \underline{b^{\prime}}}\left(\hat{b}_{W}-b^{0}\right)
$$

where \tilde{b} is between b^{0} and \hat{b}_{W}. Rescaling by \sqrt{n}, we get

$$
\sqrt{n}\left(g\left(\hat{b}_{W}\right)-g\left(b^{0}\right)\right)=\frac{\partial g(\tilde{b})}{\partial b^{\prime}} \underbrace{\sqrt{n}\left(\hat{b}_{W}-b^{0}\right)}_{n \xrightarrow{d} \mathcal{N}}
$$

From \tilde{b} is between \hat{b}_{W} and b^{0} and $\hat{b}_{W} \xrightarrow{p} b^{0} \Rightarrow \tilde{b} \xrightarrow{p} b^{0}$. By assumption, $\partial g / \partial b^{\prime}$ is continuous, we have

$$
\frac{\partial g(\tilde{b})}{\partial b^{\prime}} \xrightarrow{p} \frac{\partial g\left(b^{0}\right)}{\partial b^{\prime}}
$$

Recall that

$$
\left.\begin{array}{l}
X_{n} \xrightarrow{d} X \\
Y_{n} \xrightarrow{p} a
\end{array}\right\} \Rightarrow\binom{X_{n}}{Y_{n}} \xrightarrow{d}\binom{X}{a} .
$$

This completes the proof.

* Under $H_{0}: g\left(b^{0}\right)=0$,

$$
\begin{gathered}
\sqrt{n} g\left(\hat{b}_{W}\right) \xrightarrow{d} \mathcal{N}\left(0, A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)\right) \\
\Rightarrow w_{n}=\left[\sqrt{n} g^{\prime}\left(\hat{b}_{W}\right)\right]\left[\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)\right]^{-1}\left[\sqrt{n} g\left(\hat{b}_{W}\right)\right] \xrightarrow{d} \chi^{2}(p)
\end{gathered}
$$

$>$ Critical region (i.e. region where H_{0} is REJECTED) of the test:

$$
C_{n}=\left\{w_{n}>\chi_{1-\alpha}^{2}(p)\right\}
$$

the quantile of $\chi^{2}(p)$ distribution with level $(1-\alpha)$.

* Two properties of asymptotic tests:
$>$ Property 1 (under H_{0}). If H_{0} is true, $\operatorname{Pr}\left(C_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \alpha$, [test result is true at the asymptotic level, cf. the Monte Carlo exercise of hw2].
$>$ Property $2\left(\right.$ under $\left.H_{a}\right)$. If H_{0} is not true, $\operatorname{Pr}\left(C_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1$, [consistent test].
- Proof.

$$
w_{n}=n \underbrace{\underbrace{g^{\prime}\left(\hat{b}_{W}\right)}_{\underset{\rightarrow}{\prime} g^{\prime}\left(b^{0}\right)} \underbrace{\left[A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)\right]^{-1}}_{\rightarrow \rightarrow \text { a p.d. matrix }}}_{\rightarrow \rightarrow \text { number }>0} g\left(\hat{b}_{W}\right) \underset{n \rightarrow \infty}{\longrightarrow \infty}+\infty
$$

From $w_{n} \xrightarrow[n \rightarrow \infty]{ } \infty$ we conclude that $\operatorname{Pr}\left(C_{n}\right)=1$.

Asymptotic Tests (cont'd)

* $H_{0}: g(b)=0, g$ is $(p \times 1), b$ is $(K \times 1), p \leq K$
$>\hat{b}_{W}$ is the unconstraint estimate $-\hat{b}_{W}$ does not use the information contained in H_{0}
$>g\left(\hat{b}_{W}\right)$ close to 0 ?

$$
w_{n}=n g^{\prime}\left(\hat{b}_{W}\right)\left[\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)\right]^{-1} g\left(\hat{b}_{W}\right)
$$

Under $H_{0}, w_{n} \xrightarrow{d} \chi^{2}(p)$
$>C_{n}$ is the critical region,

$$
C_{n}=\left\{w_{n}>\chi_{1-\alpha}^{2}(p)\right\}
$$

- $P\left(C_{n}\right) \xrightarrow{n} \alpha$ when H_{0} is true [correct asymptotic size]
- $P\left(C_{n}\right) \xrightarrow{n} 1$ when H_{0} is not true [consistency]
* So far, we've been focusing on

$$
H_{0}: g(b)=0 \quad \text { vs } \quad H_{a}: g(b) \neq 0
$$

What if we want to test something more challenging?
$>$ Idea: Consider H_{a} that depends on n and gets closer to H_{0} as n increases

$$
H_{a}: g(b)=\frac{\delta}{\sqrt{n}}, \quad \delta \in \mathbb{R}^{p} \backslash\{\mathbf{0}\}
$$

This is a sequence of local alternatives.
$>$ Note that $g(b)$ is not fixed, but $\sqrt{n} g(b)$ is fixed (assuming $g(b)$ converges at rate \sqrt{n})

$$
\begin{aligned}
& \sqrt{n}\left(g\left(\hat{b}_{W}\right)-g(b)\right) \xrightarrow{d} \mathcal{N}\left(0, A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)\right) \\
& \sqrt{n} g\left(\hat{b}_{W}\right)-\sqrt{n} g(b) \xrightarrow{\stackrel{d}{\longrightarrow}} \mathcal{N}\left(0, A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)\right)
\end{aligned}
$$

Under the sequence of local alternatives: $\sqrt{n} g(b)=\delta$,

$$
\begin{aligned}
& \sqrt{n}\left(g\left(\hat{b}_{W}\right)\right) \xrightarrow{d} \mathcal{N}\left(\delta, A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)\right) \\
& \Rightarrow \sqrt{n}\left[\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)\right]^{-1 / 2} g\left(\hat{b}_{W}\right) \xrightarrow{d} \mathcal{N}\left(\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)^{-1 / 2} \delta, I\right) \\
& \Rightarrow \underbrace{n g^{\prime}\left(\hat{b}_{W}\right) \operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)^{-1} g\left(\hat{b}_{W}\right)}_{w_{n}} \stackrel{d}{\rightarrow} \chi^{2}\left(p, \delta^{\prime} A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)^{-1} \delta\right)
\end{aligned}
$$

- Recall that if

$$
z_{(p \times 1)} \sim \mathcal{N}(\mu, I) \Rightarrow z^{\prime} z \sim \chi^{2}\left(p, \mu^{\prime} \mu\right)
$$

Non-central χ^{2} with p degrees of freedom and non-centrality parameter $\mu^{\prime} \mu$.

* Property 3. Under the sequence of local alternatives,

$$
g(b)=\frac{\delta}{\sqrt{n}}, \quad \delta \in \mathbb{R}^{p} \backslash\{\mathbf{0}\}
$$

we have

$$
w_{n} \xrightarrow{d} \chi^{2}\left(p, \delta^{\prime} \operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)^{-1} \delta\right) .
$$

$>$ Asymptotic power of the test under the sequence of local alternatives

$$
P\left(C_{n}\right) \xrightarrow{n} P\left(\chi^{2}\left(p, \delta^{\prime} A \operatorname{Var}\left(g\left(\hat{b}_{W}\right)\right)^{-1} \delta\right)\right)>\chi_{1-\alpha}^{2}(p)>\alpha
$$

- The larger the non-centrality parameter, $\delta^{\prime} \operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)^{-1} \delta$, the more powerful the test is. The parameter is large in two cases:
- δ is large - but this is not very useful, as we want δ to be close to zero
- $\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)$ is small:

$$
\operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)=\frac{\partial g(b)}{\partial b^{\prime}} \underbrace{A \operatorname{Var}\left(\hat{b}_{W}\right)}_{\text {make small }} \frac{\partial g^{\prime}(b)}{\partial b}
$$

We want to pick the efficient estimator which is associated with the "smallest" asymptotic variance.

Wald confidence sets:

$$
\begin{aligned}
& \sqrt{n}\left[g\left(\hat{b}_{W}\right)-g(b)\right] \xrightarrow{d} \mathcal{N}\left(0, \operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)\right) \\
& \Rightarrow n\left[g\left(\hat{b}_{W}\right)-g(b)\right]^{\prime} \widehat{\operatorname{AVar}}\left(g\left(\hat{b}_{W}\right)\right)^{-1}\left[g\left(\hat{b}_{W}\right)-g(b)\right] \xrightarrow{d} \chi^{2}(p)
\end{aligned}
$$

$>$ Confidence set about $g(b)$ with level $(1-\alpha)$ asymptotically:

$$
\begin{gathered}
I_{n}=\left\{h \in \mathbb{R}^{p}: n\left(g\left(\hat{b}_{W}\right)-h\right)^{\prime} \widehat{A \operatorname{Var}}\left(g\left(\hat{b}_{W}\right)\right)^{-1}\left(g\left(\hat{b}_{W}\right)-h\right)<\chi_{1-\alpha}^{2}(p)\right\} \\
P\left(g(b) \in I_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1-\alpha
\end{gathered}
$$

- Finding feasible asymptotic variance

$$
\begin{aligned}
& \operatorname{AVar}\left(g\left(\hat{b}_{W}\right)\right)=\frac{\partial g(b)}{\partial b^{\prime}} \operatorname{AVar}\left(\hat{b}_{W}\right) \frac{\partial g^{\prime}(b)}{\partial b} \\
& \Rightarrow \widehat{\operatorname{AVar}}\left(g\left(\hat{b}_{W}\right)\right)=\frac{\partial g\left(\hat{b}_{W}\right)}{\partial b^{\prime}} \widehat{\operatorname{AVar}}\left(\hat{b}_{W}\right) \frac{\partial g^{\prime}\left(\hat{b}_{W}\right)}{\partial b}
\end{aligned}
$$

where

$$
A \operatorname{Var}\left(\hat{b}_{W}\right)=\left[E\left(x_{i} W_{i}^{\prime}\right) \Sigma^{-1} E\left(W_{i} x_{i}^{\prime}\right)\right]^{-1}
$$

with

$$
\Sigma=E\left(u_{i}^{2} w_{i} w_{i}^{\prime}\right)
$$

Therefore,

$$
\Rightarrow \widehat{A V a r}\left(\hat{b}_{W}\right)=\left[\left(\frac{1}{n} X^{\prime} W\right) \hat{\Sigma}^{-1}\left(\frac{1}{n} W^{\prime} X\right)\right]^{-1}
$$

f.i When $X=W$ [OLS]

$$
\Sigma=E\left(u_{i}^{2} x_{i} x_{i}^{\prime}\right) \Rightarrow \widehat{\Sigma}=\frac{1}{n} X^{\prime} \widehat{\Delta} X
$$

which is the HCC estimator with

$$
\widehat{\Delta}=\left(\begin{array}{cccc}
\hat{u}_{1}^{2} & & & 0 \\
& \hat{u}_{2}^{2} & & \\
& & \ddots & \\
0 & & & \hat{u}_{n}^{2}
\end{array}\right)
$$

or in the homoscedastic case

$$
\hat{\Sigma}=\frac{\hat{\sigma}^{2}}{n} X^{\prime} X
$$

* Restricted least squares under a linear hypothesis

$$
H_{0}: R_{(p \times K)} b=r_{(p \times 1)}, \quad \operatorname{rank}(R)=p
$$

Under homoscedasticity,

$$
w_{n}=\frac{(R \hat{b}-r)\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{b}-r)}{\hat{\sigma}^{2}}
$$

Here \hat{b} is the OLS estimator, and $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$.
Consider the constraint optimization problem:

$$
\min _{b}\left[\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} b\right)^{2}\right]=(y-X b)^{\prime}(y-X b), \quad \text { s.t. } R b=r
$$

Let $\lambda_{(p \times 1)}$ be a vector of Lagrange multipliers.

$$
\begin{gathered}
\mathcal{L}=(y-X b)^{\prime}(y-X b)+\lambda^{\prime}(R b-r) \\
\underbrace{\frac{\partial \mathcal{L}}{\partial b}}_{(K \times 1)}=-2 X^{\prime}\left(y-X \hat{b}_{c}\right)+R^{\prime} \lambda=0 \\
\Rightarrow 2 X^{\prime}\left(y-X \hat{b}_{c}\right)=R^{\prime} \lambda \Leftrightarrow \hat{b}_{c}=\hat{b}-\frac{1}{2}\left(X^{\prime} X\right)^{-1} R^{\prime} \lambda
\end{gathered}
$$

So $\hat{b}_{c} \neq \hat{b}$ as long as $\lambda \neq 0$, i.e. anytime the constraints are binding.

$$
\underbrace{R \hat{b}_{c}}_{r}=R \hat{b}-\frac{1}{2} \underbrace{R\left(X^{\prime} X\right)^{-1} R^{\prime}}_{\text {invertible }} \lambda \Rightarrow \lambda=2\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{b}-r)
$$

Finally,

$$
\hat{b}_{c}=\hat{b}-\left(X^{\prime} X\right)^{-1} R\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{b}-r)
$$

Difference between the adjusted values:

$$
\begin{aligned}
X \hat{b}-X \hat{b}_{c}=X & \left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{b}-r) \\
\Rightarrow\left\|X \hat{b}-X \widehat{b}_{c}\right\|^{2} & =\left(X \hat{b}-X \hat{b}_{c}\right)^{\prime}\left(X \hat{b}-X \hat{b}_{c}\right) \\
& =(R \hat{b}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{b}-r)
\end{aligned}
$$

This is the numerator of the Wald test statistic w_{n}, i.e.

$$
w_{n}=\frac{\left\|X \hat{b}-X \hat{b}_{c}\right\|^{2}}{\hat{\sigma}^{2}}
$$

$>$ Geometric interpretation

- Pythagorean theorem:

$$
\begin{aligned}
\left\|\hat{u}_{c}\right\|^{2} & =\|\hat{u}\|^{2}+\left\|X \hat{b}-X \hat{b}_{c}\right\|^{2} \\
& =\|\hat{u}\|^{2}+\left\|\hat{u}-\hat{u}_{c}\right\|^{2} \\
\Rightarrow \quad w_{n} & =\frac{\left\|X \hat{b}-X \hat{b}_{c}\right\|^{2}}{\hat{\sigma}^{2}} \\
& =\frac{\left\|\hat{u}_{c}\right\|^{2}-\|\hat{u}\|^{2}}{\hat{\sigma}^{2}} \\
& =n \cdot \frac{\stackrel{S S R_{0}}{ }{ }^{2} / n}{S S R}
\end{aligned}
$$

- The Gaussian case (small sample).

Assume $u \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$, or $u / \sigma \sim \mathcal{N}\left(0, I_{n}\right)$. Then,

$$
y\left|X \sim \mathcal{N}\left(X b, \sigma^{2} I_{n}\right) \Rightarrow \widehat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y\right| X \sim \mathcal{N}
$$

and $\hat{b}_{C} \mid X \sim \mathcal{N}$ (as a linear transformation of \hat{b})

$$
\begin{aligned}
\hat{u} & =M_{X} y=M_{X} u \\
\left\|\frac{\hat{u}}{\sigma}\right\|^{2} & \sim \chi^{2}(n-K) \\
\left\|\frac{\hat{u}_{c}}{\sigma}\right\|^{2} & \sim \chi^{2}(n-(K-p))
\end{aligned}
$$

From the Pythagorean theorem:

$$
\begin{gathered}
\frac{\left\|\hat{u}_{c}\right\|^{2}}{\sigma_{\downarrow}^{2}}=\frac{\|\hat{u}\|^{2}}{\sigma_{\downarrow}^{2}}+\frac{\left\|\hat{u}_{c}-\hat{u}\right\|^{2}}{\sigma_{\downarrow}^{2}} \\
\Rightarrow \frac{1}{n} w_{n} \cdot \frac{n-K}{p}=\frac{\left[S S R_{0}-S S R\right] / p}{S S R /(n-K)} \sim \mathcal{F}(p, n-K)
\end{gathered}
$$

under the null. Note that

$$
\begin{aligned}
\frac{\left[S S R_{0}-S S R\right]}{p} & \sim \frac{\chi^{2}(p)}{p} \\
\frac{S S R}{n-K} & \sim \frac{\chi^{2}(n-K)}{n-K}
\end{aligned}
$$

If H_{0} is not true, $\left\|\hat{u}_{c}\right\|^{2}$ does not mean 0 anymore, because we imposed the incorrect restriction $R b=r$.

- Fisher test of H_{0} :

$$
C_{n}^{F}=\left\{\frac{\left(S S R_{0}-S S R\right) / p}{S S R /(n-K)}>F_{1-\alpha}(p, n-K)\right\}
$$

and $P\left(C_{n}^{F}\right)=\alpha$ under H_{0}

- This is exact!! Because I have the exact finite sample distribution of test statistic.

Asymptotic Test (cont'd)

* Recall from last time the Fisher test of $H_{0}: R b_{(K \times 1)}=r_{(p \times 1)}$

$$
C_{n}^{F}=\left\{\frac{\left(S S R_{0}-S S R\right) / p}{S S R /(n-K)}>F_{1-\alpha}(p, n-K)\right\}
$$

$P\left(C_{n}^{F}\right)=\alpha$ under H_{0}.
> Asymptotically,

$$
C_{n}^{F}=\left\{w_{n}>\frac{n p}{n-K} \cdot F_{1-\alpha}(p, n-K)\right\}
$$

- We're interested in knowing whether

$$
\frac{n p}{n-K} \cdot F_{1-\alpha}(p, n-K) \xrightarrow{?} \chi_{1-\alpha}^{2}(p)
$$

If this is the case, then Wald testing and Fisher testing are equivalent asymptotically.
$>$ Proof of the above convergence.

$$
\frac{n p}{n-K} F(p, n-K)=\frac{n p}{n-K} \cdot \frac{\chi^{2}(p) / p}{\chi^{2}(n-K) /(n-K)}=\frac{\chi^{2}(p)}{n^{-1} \chi^{2}(n-K)}
$$

Note that the denominator converges to 1 :

$$
\begin{aligned}
\frac{1}{n} \chi^{2}(n-K) & =\underbrace{\underbrace{n}}_{\xrightarrow{\frac{n-K}{n \rightarrow \infty}}} \cdot \underbrace{\frac{1}{n-K} \sum_{t=0}^{n-K} z_{i}^{2}}_{\xrightarrow[\rightarrow]{p} E\left(z_{i}^{2}\right)=\operatorname{Var}\left(z_{i}^{2}\right)=1}, \quad z_{i} \sim \mathcal{N}(0,1) \\
& \xrightarrow{p} 1
\end{aligned}
$$

* Connection with R^{2}
$>R^{2}$ only makes sense when there is a constant in the regression model:

Using the Pythagorean theorem:

$$
\begin{gathered}
\underbrace{\frac{1}{n}\left\|\hat{u}_{0}\right\|^{2}}_{\begin{array}{c}
\frac{1}{n} \sum_{i=0}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
\text { total variance }
\end{array}}=\underbrace{\frac{1}{\|}\|\hat{u}\|^{2}}_{\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n} \hat{u}^{2} \\
\text { with } \hat{u}=0 \\
\text { residual variance }
\end{array}}+\underbrace{\frac{1}{n}\left\|\hat{y}-\bar{y} e_{n}\right\|^{2}}_{\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
\text { explained variance }
\end{array}} \\
\Rightarrow \text { Total variance }=\text { Residual variance }+ \text { Explained variance }
\end{gathered}
$$

By definition,

$$
R^{2}=\frac{\text { Explained variance }}{\text { Total variance }}=\frac{\left\|\hat{y}-\hat{y} e_{n}\right\|^{2}}{\left\|\hat{u}_{0}\right\|^{2}}
$$

Recall,

$$
w_{n}=n \frac{n^{-1} S S R_{0}-n^{-1} S S R}{n^{-1} S S R}=\frac{n R^{2}}{1-R^{2}}
$$

Critical region (asymptotically):

$$
C_{n}=\left\{\frac{n R^{2}}{1-R^{2}}>\chi_{1-\alpha}^{2}(K)\right\} \quad \text { or } \quad C_{n}^{*}=\left\{n R^{2}>\chi_{1-\alpha}^{2}(K)\right\}
$$

Sufficient to show that

$$
\frac{1}{1-R^{2}}=\frac{\left\|\hat{u}_{0}\right\|^{2}}{\|\hat{u}\|^{2}} \xrightarrow{p} 1
$$

This is true under H_{0}.

Testing Conditional Homoscedasticity

* OLS: $\hat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ with

$$
\begin{aligned}
& \operatorname{Var}(\hat{b} \mid X)=\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Var}(y \mid X) X\left(X^{\prime} X\right)^{-1} \\
& \frac{1}{n} \operatorname{AVar}(\hat{b})=\left[E\left(x_{i} x_{i}^{\prime}\right)\right]^{-1} E\left(x_{i} x_{i}^{\prime} u_{i}^{2}\right)\left[E\left(x_{i} x_{i}^{\prime}\right)\right]^{-1}
\end{aligned}
$$

can be consistently estimated by HCC

$$
H C C=\left[\sum_{i=1}^{n} x_{i} x_{i}^{\prime}\right]^{-1}\left[\sum_{i=1}^{n} x_{i} x_{i}^{\prime} \hat{u}_{i}^{2}\right]\left[\sum_{i=1}^{n} x_{i} x_{i}^{\prime}\right]^{-1}
$$

$>$ Test of $H_{0}: \operatorname{Var}\left(u_{i} \mid x_{i}\right)=\sigma^{2}$ for any i, i.e. $H_{0}:$ conditional homoscedasticity
$>$ Idea is to compare

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\prime} \hat{u}_{i}^{2} \quad \text { and } \quad \hat{\sigma}^{2} \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\prime}
$$

* White (1980)

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\prime}\left(\hat{u}_{i}^{2}-\hat{\sigma}^{2}\right) \xrightarrow{p} 0 ?
$$

Here $x_{i} x_{i}^{\prime}$ is a (K, K) matrix with $K(K+1) / 2$ different terms
$>$ Define ψ_{i} that contains all the different terms of $x_{i} x_{i}^{\prime}$.

$$
c_{n} \equiv \frac{1}{n} \sum_{i=1}^{n} \psi_{i}\left(\hat{u}_{i}^{2}-\hat{\sigma}^{2}\right) \xrightarrow{p} 0 ?
$$

Testing for Conditional Homoscedasticity

* Recall from last time:

$$
c_{n}=\frac{1}{n} \sum_{i=1}^{n} \psi_{i}\left(\hat{u}_{i}^{2}-\hat{\sigma}^{2}\right) \xrightarrow{p} 0
$$

where ψ_{i} is a vector of different terms in $x_{i} x_{i}^{\prime}$.

$$
\sqrt{n} c_{n} \xrightarrow{d} \mathcal{N}(0, B)
$$

Define

$$
\xi_{n}=n c_{n}^{\prime} \hat{B}^{-1} c_{n} \xrightarrow{d} \chi^{2}(m)
$$

where m is the number of non-constant terms in ψ_{i}.

* In practice, we perform an auxiliary regression:

$$
\hat{u}_{i}^{2}=\alpha+\psi_{i}^{\prime} \gamma+\epsilon_{i}
$$

$>$ The assumption we're interested in is

$$
H_{0}: \gamma=0
$$

That is, if there is homoscedasticity, then the regressors should not be able to explain much of the residuals.

- Constrained estimator: $\hat{\alpha}_{c}=\hat{\sigma}^{2}$
- Unconstrained OLS estimators: $\hat{\alpha}+\psi_{i}^{\prime} \hat{\gamma}$ and the associated test statistic $\xi_{n}=n R^{2}$
- Reject homoscedasticity if and only if $n R^{2}>\chi_{1-\alpha}^{2}(m)$

Dynamic Regression Model

* General framework
$>$ Need for ergodic stationarity
$>$ Dynamic regression model:

$$
y_{t}=x_{t}^{\prime} b+u_{t}, \quad E u_{t}=0
$$

- x_{t} is still called the explanatory variable, but there are two kinds
- Lagged values of $y_{t}: y_{t-1}, y_{t-2}, \ldots, y_{t-p}$
- Other variables: $\quad \eta_{t}, \eta_{t-1}, \ldots, \eta_{t-q}$, where η_{t} is $K \times 1$

So the regress model is

$$
y_{t}=\underbrace{\sum_{i=1}^{p} \alpha_{j} y_{t-j}+\sum_{i=0}^{q} \eta_{t-i}^{\prime} \gamma_{i}}_{x_{t}^{\prime} b}+u_{t}
$$

So here,

$$
b^{0}=\left[\operatorname{Var}\left(x_{t}\right)\right]^{-1} \operatorname{Cov}\left(x_{t}, y_{t}\right)
$$

where $\operatorname{Cov}\left(x_{t}, y_{t}\right)$ contain things like

$$
\operatorname{Cov}\left(\eta_{t-h}, \eta_{t-\ell}\right), \operatorname{Cov}\left(y_{t-i}, y_{t-j}\right), \ldots
$$

* Definition. A stochastic process $\left(z_{t}\right)$ is (strictly) stationary if for all r and all t, the joint probability distribution of $\left(z_{t}, z_{t+h_{1}}, z_{t+h_{2}}, \ldots, z_{t+h_{r}}\right)$ depends on $h_{1}, h_{2}, \ldots, h_{r}$ but not on t.
* Definition. A process is weakly stationary (or covariance stationary) when $E\left(z_{t}\right)$ and $\operatorname{Cov}\left(z_{t}, z_{t+h}\right)$ do not depend on h.
$>$ Note.
- $\left(z_{t}\right)$ is iid $\Rightarrow\left(z_{t}\right)$ is a stationary process
- $\left(z_{t}\right)$ is stationary $\Rightarrow\left(z_{t}\right)$ is identically distributed with some serial dependence
$>$ Stationarity is not sufficient to get LLN
- Example. $\left(x_{t}\right)$ iid, and z is independent of x_{t}

$$
y_{t}=x_{t}+z
$$

Here $\left(y_{t}\right)$ is stationary:

$$
\operatorname{Cov}\left(y_{t}, y_{t+h}\right)=\operatorname{Cov}\left(x_{t}+z, x_{t+h}+z\right)=\operatorname{Var}(z)
$$

This implies that $\left(x_{t}+z, x_{t+h_{1}}+z, x_{t+h_{2}}+z, \ldots, x_{t+h_{r}}+z\right)$ has the same probability distribution as any $\left(x_{\bar{t}}+z, x_{\bar{t}+h_{1}}+z, x_{\bar{t}+h_{2}}+z, \ldots, x_{\bar{t}+h_{r}}+z\right)$.

$$
\begin{array}{r}
\frac{1}{T} \sum_{t=1}^{T} y_{t} \xrightarrow{?} E\left(y_{t}\right)=E\left(x_{t}\right)+E(z) \\
=\frac{1}{T} \sum_{t=1}^{T}\left(x_{t}+z\right)=\frac{1}{T} \sum_{t=1}^{T} x_{t}+z \xrightarrow{p} E\left(x_{t}\right)+z \neq E\left(y_{t}\right)
\end{array}
$$

Unless $z=E(z)$, i.e. z is a constant. But this is not true in general.

- To avoid this situation, we would need to assume ergodicity.
$>$ Ergodicity (informal definition): A random event involving every member of the sequence has either probability 0 or 1 .
- Example (cont'd with the previous). If $P(z<a)$ is either 0 or 1 , then z is a constant (i.e. z is deterministic). So the counter-example does not work any more.
* Ergodic Theorem. If $\left(z_{t}\right)$ is stationary, ergodic, and integrable, then

$$
\frac{1}{T} \sum_{t=0}^{T} z_{t} \xrightarrow{p} E\left(z_{t}\right)
$$

Hayashi (page 101): "A stationary process is ergodic if it is asymptotically independent"

$$
\lim _{n \rightarrow \infty} \operatorname{Cov}\left(f\left(z_{t+h_{1}}, z_{t+h_{2}}, \ldots, z_{t+h_{r}}\right), g\left(z_{t+n+h_{1}}, z_{t+n+h_{2}}, \ldots, z_{t+n+h_{r}}\right)\right)=0, \quad \forall f, g
$$

* Theorem. Let $\left(z_{t}\right)$ be stationary, ergodic with finite variance process.

$$
\frac{1}{T} \sum_{t=1}^{T} \operatorname{Cov}\left(z_{1}, z_{t}\right) \xrightarrow{T \rightarrow \infty} 0
$$

$>$ The converse (non-correlation \Rightarrow asymptotic independence) is true only for the Gaussian processes.
$>$ Note 1. If we know that

$$
\operatorname{Cov}\left(z_{1}, z_{t}\right) \xrightarrow{t \rightarrow \infty} 0 \Rightarrow \frac{1}{T} \sum_{t=1}^{T} \operatorname{Cov}\left(z_{1}, z_{t}\right) \xrightarrow{T \rightarrow \infty} 0
$$

But the converse is not true, since

$$
\frac{1}{T} \sum_{t=1}^{T} \operatorname{Cov}\left(z_{1}, z_{t}\right)=\operatorname{Cov}\left(z_{1}, \frac{1}{T} \sum_{t=1}^{T} z_{t}\right)
$$

Note 2. With $y_{t}=x_{t}+z \operatorname{Cov}\left(y_{1}, y_{t}\right)=\operatorname{Var}(z)$

$$
\frac{1}{T} \sum_{t=1}^{T} \operatorname{Cov}\left(y_{1}, y_{t}\right) \xrightarrow{?} 0
$$

* Need for Martingale Difference Sequence (MDS)
$>$ Example. OLS: $y_{t}=x_{t}^{\prime} b+u_{t}$ with

$$
\begin{gathered}
\hat{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=b^{0}+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
\Rightarrow \sqrt{T}\left(\hat{b}-b^{0}\right)=\underbrace{\left[\frac{X^{\prime} X}{T}\right]^{-1}}_{\rightarrow E\left(x_{i} x_{i}^{\prime}\right)} \cdot \underbrace{C L T}_{\frac{1}{T} \sum_{t=1}^{T} x_{t} u_{t}} \begin{array}{c}
\frac{X^{\prime} u}{\sqrt{T}}
\end{array}
\end{gathered}
$$

Think about $\left(\mathcal{F}_{t}\right)$ filtration, i.e. an increasing sequence of σ-fields

$$
\mathcal{F}_{t} \subset \mathcal{F}_{t+1}
$$

- Interpretation: \mathcal{F}_{t} contains everything we know at time t, i.e. z_{τ} where $\tau \leq t$. In the dynamic regression model, $y_{t}=x_{t}^{\prime} b+u_{t}$,

$$
\mathcal{F}_{t-1}=\sigma \underbrace{\left(y_{\tau}, \tau<t ; x_{s}, s \leq t\right)}_{\text {predetermined variables }}
$$

This is the smallest σ-field containing all the predetermined variables.

$$
E\left[u_{t} \mid \mathcal{F}_{t-1}\right]=0
$$

* Definition. $\left(z_{t}\right)$ is $\boldsymbol{F}_{\boldsymbol{t}}$-adapted if $z_{t} \in \mathcal{F}_{t}$.
$>$ We say that $\left(z_{t}, \mathcal{F}_{t}\right)$ is an adapted sequence.
* Definition. M_{t} is a martingale with respect to \mathcal{F}_{t} if M_{t} is \mathcal{F}_{t}-adapted, integrable, and $E\left(M_{t} \mid \mathcal{F}_{t-1}\right)=M_{t-1}$.
* Definition. ϵ_{t} is a martingale difference sequence (MDS) if ϵ_{t} is \mathcal{F}_{t}-adapted, integrable, and $E\left(\epsilon_{t} \mid \mathcal{F}_{t-1}\right)=0$.

Time Series (cont'd)

* A word on m.d.s.:
$>M_{t}$ is martingale with respect to $\mathcal{F}_{t} \rightarrow E\left(M_{t} \mid \mathcal{F}_{t-1}\right)=M_{t-1}$
- $\epsilon_{t}=M_{t}-M_{t-1}$
- $E\left(\epsilon_{t} \mid \mathcal{F}_{t-1}\right)=E\left(M_{t} \mid \mathcal{F}_{t-1}\right)-E\left(M_{t-1} \mid \mathcal{F}_{t-1}\right)=M_{t-1}-M_{t-1}=0$
* Theorem. If $\left(\epsilon_{t}, \mathcal{F}_{t}\right)$ is m.d.s. and $\left(x_{t}, \mathcal{F}_{t}\right)$ is adapted, then
(i) $\operatorname{Cov}\left(\epsilon_{t}, x_{t-1}\right)=0$
(ii) $\left(\epsilon_{t} x_{t-1}\right)$ is a m.d.s. with respect to \mathcal{F}_{t}

Proof. Statement (i):

$$
\begin{aligned}
\operatorname{Cov}\left(\epsilon_{t}, x_{t-1}\right) & =E\left(\epsilon_{t} x_{t-1}\right)-\underbrace{E \epsilon_{t}}_{=0} E x_{t-1} \\
& =E\left[E\left(\epsilon_{t} x_{t-1} \mid \mathcal{F}_{t-1}\right)\right] \\
& =E\left[x_{t-1} E\left(\epsilon_{t} \mid \mathcal{F}_{t-1}\right)\right] \\
& =0
\end{aligned}
$$

Statement (ii) can be proved similarly.

* In cross-section, we assume that ϵ_{t} is serially independent

$$
\begin{aligned}
& \Rightarrow \quad \epsilon_{t}, \epsilon_{t-1} \text { are independent } \\
& \Leftrightarrow \quad \operatorname{Cov}\left(f\left(\epsilon_{t}\right), g\left(\epsilon_{t-1}\right)\right)=0, \quad \forall f, g
\end{aligned}
$$

$>\epsilon_{t}$ is mds (with respect to "natural filtration" $\mathcal{F}_{t}=\left\{\epsilon_{\tau}: t \geq \tau\right\}$)

$$
\Rightarrow E\left(\epsilon_{t} \mid \mathcal{F}_{t-1}\right)=0 \text { and } \operatorname{Cov}\left(\epsilon_{t}, g\left(\epsilon_{\tau}\right)\right)=0, \quad \forall g, \quad \forall \tau<t
$$

$>\epsilon_{t}$ is serially uncorrelated if and only if

$$
\operatorname{Cov}\left(\epsilon_{t}, \epsilon_{\tau}\right)=0, \quad \forall \tau<t
$$

$>$ Serial independence is stronger than mds (serial uncorrelation with any function of the past), which is in turn stronger than serial uncorrelation (with the past)

- mds gives use CLT with serial dependence
- serial uncorrelation gives WLLN
* Theorem (WLLN). If $\left(\epsilon_{t}\right)$ is a stationary mds, then

$$
\frac{1}{T} \sum_{t=1}^{T} \epsilon_{t} \xrightarrow{p} 0
$$

$>$ Note:

- $\left(\epsilon_{t}\right)$ is mds $\nRightarrow f\left(\epsilon_{t}\right)$ is mds
- $\left(\epsilon_{t}\right)$ is stationary and ergodic $\Rightarrow \forall f, f\left(\epsilon_{t}\right)$ is stationary and ergodic
* Theorem (CLT). If $\left(\epsilon_{t}\right)$ is squared integrable, stationary mds such that $\frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} \xrightarrow{p} \sigma^{2}$, then

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \epsilon_{t} \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right)
$$

General Method of Moments (GMM)

* GMM Orthogonality Condition (cf. Hansen (1982) Econometrica)
$>$ General idea: Estimation is based on
- Observation of a sequence $\left(z_{t}\right)$ which is stationary and ergodic
- Structural knowledge about $f\left(z_{t}, \theta\right)$ (where f is known but θ is unknown) such that the true unknown value of θ, say θ^{0}, is characterized by $f\left(z_{t}, \theta^{0}\right)$ a mds with respect to $\left(\mathcal{F}_{t}\right)$
$>$ Two different cases
(1) z_{t} is iid, i.e. $E\left[f\left(z_{t}, \theta^{0}\right)\right]=0 \rightarrow$ unconditional moment restriction (UMR)
(2) $f\left(z_{t}, \theta\right)=w_{t} \cdot u_{t}(\theta)$, where
- u_{t} is the error term with $E\left[u_{t}\left(\theta^{0} \mid \mathcal{F}_{t-1}\right)\right]=0$. Here \mathcal{F}_{t-1} is the predetermined information. \rightarrow conditional moment restriction (CMR)
- $w_{t} \in \mathcal{F}_{t-1}$. Note that

$$
\left.\begin{array}{c}
E\left[u_{t}\left(\theta^{0} \mid \mathcal{F}_{t-1}\right)\right]=0 \\
w_{t} \in \mathcal{F}_{t-1}
\end{array}\right\} \rightarrow \mathrm{UMR}
$$

But this is not the only way to come up with a UMR, e.g. use $g\left(w_{t}\right)$ where g is any function will also work.

- z_{t} : all the variables entering into $u_{t}(\theta)$ and w_{t}

$$
\Rightarrow E\left(f\left(z_{t}, \theta^{0}\right) \mid \mathcal{F}_{t-1}\right)=0
$$

GMM (cont'd)

* GMM orthogonality conditions
$>$ Unconditional Moment Restriction: $E\left[f\left(z_{t}, \theta^{0}\right)\right]=0$, where f is known and z_{t} is iid
$>$ Conditional Moment Restriction: $E\left[u_{t}\left(\theta^{0}\right) \mid \mathcal{F}_{t-1}\right]=0$
- Pick $w_{t-1} \in \mathcal{F}_{t-1}$. Then we have the UMR:

$$
E[\underbrace{w_{t-1} u_{t}\left(\theta^{0}\right)}_{f\left(z_{t}, \theta^{0}\right)}]=0
$$

- In general, any function $g\left(w_{t}\right)$ will work. So from one CMR we can potentially derive an infinite number of UMR's.
* Example 1. Dynamic Regression Model.

$$
\begin{aligned}
y_{t}= & x_{t}^{\prime} b+u_{t}, \quad u_{t}(\theta)=y_{t}-x_{t}^{\prime} b \\
w_{t-1} \rightarrow & \begin{cases}x_{t} & \text { where there is no simultaneity issues } \\
\eta_{t} & \text { where }\left\{\begin{array}{c}
\text { simultaneity issues } \\
\text { conditional heteroscedasticity }
\end{array}\right.\end{cases}
\end{aligned}
$$

Predetermined variables (i.e. variables that belong to \mathcal{F}_{t-1})
$>y_{\tau}, \tau<t$
$>\eta_{\tau}, \tau \leq t$ if exogenous

* Example 2. Euler equations

$$
\max _{C_{t+h}, \theta} \sum_{h=1}^{\infty} \beta^{h} E\left(U\left(C_{t+h}, \theta\right) \mid \mathcal{F}_{t}\right)
$$

> Constraints:

$$
W_{t+h}=\left(W_{t+h-1}-C_{t+h-1}\right) R_{t+h}
$$

where R_{t+h} is the returns received between period $(t+h-1)$ and $(t+h)$.
$>$ Differentiate wrt C_{t+h} to get FOC:

$$
\begin{aligned}
& -U^{\prime}\left(C_{t+h-1}\right)+\beta E\left[U^{\prime}\left(C_{t+h}\right) R_{t+h} \mid \mathcal{F}_{t+h-1}\right]=0 \\
& \Leftrightarrow E\left[\left.\beta \frac{U^{\prime}\left(C_{t+h}\right)}{U^{\prime}\left(C_{t+h-1}\right)} \cdot R_{t+h}-1 \right\rvert\, \mathcal{F}_{t+h-1}\right]=0
\end{aligned}
$$

* More examples in Hayashi, Chapter 3.1, 3.2, on simultaneity issues and relevant instruments
* Identification.

$$
E\left[f\left(z_{t}, \theta^{0}\right)\right]=0
$$

$>$ Case 1. $f\left(z_{t}, \theta\right)=w_{t}\left(y_{t}-x_{t}^{\prime} \theta\right)$.

$$
E\left(w_{t} y_{t}\right)=E(\underbrace{w_{t}}_{H \times 1} \underbrace{x_{t}^{\prime}}_{1 \times p}) \underbrace{\theta}_{p \times 1}
$$

Here, $H \geq p$. We need $w_{t} x_{t}^{\prime}$ to have full column rank, i.e. rank p. Hence, we ensure that

$$
E\left(f\left(z_{t}, \theta^{0}\right)\right)=0 \Leftrightarrow \theta=\theta^{0}
$$

$>$ Case 2. Non-linear regression model

$$
y_{t}=h\left(x_{t}, \theta\right)+u_{t}
$$

$$
f\left(z_{t}, \theta\right)=w_{t}\left(y_{t}-h\left(x_{t}, \theta\right)\right)
$$

Locally, we can re-interpret the non-linear regression model as a linear one.

- Rank condition:

$$
\operatorname{rank}\left(E\left[w_{t} \frac{\partial h\left(x_{t}, \theta^{0}\right)}{\partial \theta^{\prime}}\right]\right)=p
$$

$>$ Case 3. General Case: $E\left(f\left(z_{t}, \theta^{0}\right)\right)=0$

- Identification assumptions:
(1) Rank condition:

$$
\operatorname{rank}\left(E\left[\frac{\partial f\left(z_{t}, \theta^{0}\right)}{\partial \theta^{\prime}}\right]\right)=p
$$

where f is a functional vector of size $H \geq p$.
(2) $E\left(f\left(z_{t}, \theta^{0}\right)\right)=0 \Leftrightarrow \theta=\theta^{0}$.
$>$ Note. Order condition (necessary but not sufficient condition for identification)

- $\quad p$ is the number of parameters and H is the number of moment conditions
- $p=H \rightarrow$ just-identified case
- $p<H \rightarrow$ over-identified case
- $p>H \rightarrow$ under-identified case
- From the identification point of view, more condition is better to hope that the rank condition is satisfied.
* Assumption. $\operatorname{Var}\left(f\left(z_{t}, \theta^{0}\right)\right)$ is non-singular.
$>$ Example. $f\left(z_{t}, \theta^{0}\right)=w_{t} u_{t}\left(\theta^{0}\right)$

$$
\begin{aligned}
\operatorname{Var}\left(f\left(z_{t}, \theta^{0}\right)\right) & =E\left[f\left(z_{t}, \theta^{0}\right) f^{\prime}\left(z_{t}, \theta^{0}\right)\right] \\
& =E\left[w_{t} w_{t}^{\prime} u_{t}^{2}\left(\theta^{0}\right)\right] \\
& =E[w_{t} w_{t}^{\prime} \underbrace{E\left(u_{t}^{2}\left(\theta^{0}\right) \mid \mathcal{F}_{t-1}\right)}_{\sigma_{t-1}^{2}\left(\theta^{0}\right)}] \\
& =E\left[w_{t} w_{t}^{\prime} \sigma_{t-1}^{2}\left(\theta^{0}\right)\right]
\end{aligned}
$$

To check that it is non-singular, we compute

$$
\begin{aligned}
& \alpha^{\prime} \operatorname{Var}\left(f\left(z_{t}, \theta^{0}\right)\right) \alpha=E\left[\left(\alpha^{\prime} w_{t}\right)^{2} \sigma_{t-1}^{2}\left(\theta^{0}\right)\right]=0 \\
& \quad \Rightarrow\left(\alpha^{\prime} w_{t}\right)^{2} \sigma_{t-1}^{2}\left(\theta^{0}\right)=0, \quad \text { a.s. }
\end{aligned}
$$

- Assumption. $P\left(\sigma_{t-1}^{2}\left(\theta^{0}\right)=0\right)=0$ and $E\left[w_{t} w_{t}^{\prime}\right]$ non-singular (or no redundant IV in w_{t})

Consistent GMM Estimation

* Definition. $E\left[f\left(z_{t}, \theta\right)\right]=0$ where f is $H \times 1$ and θ is $p \times 1$
$>$ Case 1. Just-identified $(H=p)$.

$$
\hat{\theta} \text { is the solution of }\left\{\frac{1}{T} \sum_{t=1}^{T} f\left(z_{t}, \theta\right)=0\right\}
$$

- p equations for p unknowns
- Can "hope" to find such $\hat{\theta}$
$>$ Case 2. Over-identified $(H>p)$. We solve an approximation problem.

$$
\min _{\theta}\left\{\bar{f}_{T}(\theta)^{\prime} W_{T} \bar{f}_{T}(\theta)\right\}
$$

where

- $\bar{f}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} f\left(z_{t}, \theta\right)$
- W_{T} is a $H \times H$ positive definite matrix which is called weighting matrix.
- We get $\hat{\theta}_{T}\left(W_{T}\right)$ for each matrix W_{T}, i.e. a different GMM estimate. For notational simplicity, we drop the argument and write only $\hat{\theta}_{T}$
- In the over-identified case, there is more "freedom" in the choice of W_{T}. In contrast, in the just-identified case, whatever W_{T} you pick, the solution of $\hat{\theta}$ is going to be the same.

FOC

$$
\underbrace{\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta}}_{p \times H} \underbrace{W_{T}}_{H \times H} \underbrace{\bar{f}_{T}\left(\hat{\theta}_{T}\right)}_{H \times 1}=0
$$

Redefine

$$
\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T}:=A_{T}, \quad[\text { selection matrix }]
$$

Then,

$$
A_{T} \bar{f}_{T}\left(\hat{\theta}_{T}\right)=0
$$

- We started with H moment conditions and we selected p linear combinations of them.
- The p rows of A_{T} are in the space spanned by the p vectors $\partial \bar{f}_{T}\left(\hat{\theta}_{T}\right) / \partial \theta_{j}, j=1, \ldots, p$.
* Consistency. $Q_{T}(\theta):=\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)$

$$
\hat{\theta}_{T}=\arg \min \left\{\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)\right\}
$$

$>$ Intuition:

- z_{t} is ergodic stationary
- From ergodic theorem:

$$
\bar{f}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} f\left(z_{t}, \theta\right) \xrightarrow{p} E\left[f\left(z_{t}, \theta\right)\right]
$$

- Assumption on $W_{T}: W_{T} \xrightarrow{p} W$, where W is positive definite.
$>$ Criterion function

$$
\underbrace{Q_{T}(\theta)}_{\text {sample criterion }} \xrightarrow{p} \underbrace{Q_{\infty}(\theta)}_{\text {asymptotic criterion }}=E\left[f\left(z_{t}, \theta\right)\right]^{\prime} W E\left[f\left(z_{t}, \theta\right)\right]
$$

Question:

$$
\begin{array}{ccc}
Q_{T}(\theta) & \xrightarrow{p} & Q_{\infty}(\theta) \\
\downarrow \text { min } & & \downarrow \min \\
\hat{\theta}_{T} & ? \xrightarrow{p} ? & \theta^{0}
\end{array}
$$

$>$ Theorem. Suppose

- $\theta \in \Theta$ where Θ is a compact subset of \mathbb{R}^{p}
- $Q_{T}(\cdot)$ is continuous with respect to θ
- $Q_{T}(\theta) \xrightarrow{p} Q_{\infty}(\theta)$ uniformly with respect to θ
- θ^{0} is unique solution of $\min _{\theta \in \Theta}\left\{Q_{\infty}(\theta)\right]$
then, we have

$$
\hat{\theta}_{T}=\arg \min _{\theta \in \Theta} Q_{T}(\theta) \xrightarrow{p} \theta^{0}
$$

- This is the general result for consistency of extremum estimators
$>$ Special case of GMM.
- Assumption: stationarity, ergodicity, W positive definite as previously stated
- $Q_{T}(\theta)=\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)$ satisfies
- Continuity: $f\left(z_{t}, \theta\right)$ with respect to θ
- Uniform convergence: LLN applied to $f\left(z_{t}, \theta\right)$, uniform WLLN for $\bar{f}_{T}(\theta)$

Consistency of Extremum Estimators (cont'd)

* An extremum estimator is

$$
\hat{\theta}_{T}=\arg \min _{\theta}\left[Q_{T}(\theta)\right]
$$

$>$ A special case is the minimum distance estimator

$$
Q_{T}(\theta)=\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)
$$

where $E\left[f\left(z_{t}, \theta\right)\right]=0$, and

$$
\bar{f}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} f\left(z_{t}, \theta\right)
$$

The GMM is

$$
Q_{\infty}(\theta)=E\left[f\left(z_{t}, \theta\right)\right]^{\prime} W E\left[f\left(z_{t}, \theta\right)\right]
$$

> Another case is the M-estimator

$$
Q_{T}=\frac{1}{T} \sum_{t=1}^{T} m\left(z_{t}, \theta\right), \quad Q_{\infty}(\theta)=E\left[m\left(z_{t}, \theta\right)\right]
$$

Examples are: OLS, NLS, WLS, WNLS, MLE

$$
\begin{gathered}
y_{t}=h\left(x_{t}, \theta\right)+u_{t} \\
Q_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-h\left(x_{t}, \theta\right)\right)^{2}
\end{gathered}
$$

* Consistency of GMM-estimator (as a special case of extremum estimator)
$>$ Regularity: stationarity, ergodicity, positive definiteness of W
$>\theta \in \Theta \subset \mathbb{R}^{p}$, where Θ is compact
$>$ Continuity of $f\left(z_{t}, \cdot\right)$
$>$ Uniform convergence for $\bar{f}_{T}(\theta)$. In this case, we require the uniform LLN for $\bar{f}_{T}(\theta)$
- Sufficient condition for uniform convergence of $\bar{f}_{T}(\cdot)$:

$$
E\left[\sup _{\theta \in \Theta}\left\|f\left(z_{t}, \theta\right)\right\|\right]<\infty
$$

* Asymptotic normality.
$>$ We need to apply the mean value theorem to the FOC

$$
\frac{\partial Q_{T}\left(\hat{\theta}_{T}\right)}{\partial \theta}=0
$$

Do a mean-value expansion.

- Recall the MVT: Let $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ continuously differentiable. Then there exists $\bar{\theta} \in\left[\hat{\theta}_{T}-\theta^{0}\right]$ such that

$$
h\left(\hat{\theta}_{T}\right)=h\left(\theta^{0}\right)+\frac{\partial h(\bar{\theta})}{\partial \theta^{\prime}}\left(\hat{\theta}_{T}-\theta^{0}\right)
$$

Note that $\bar{\theta}$ could be different for each component $h(\cdot)$, which is a vector.
The GMM case:

$$
Q_{T}(\theta)=\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)
$$

The FOC is

$$
\frac{\partial Q_{T}\left(\hat{\theta}_{T}\right)}{\partial \theta}=2 \frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \bar{f}_{T}\left(\hat{\theta}_{T}\right)=0
$$

Focus on $\bar{f}_{T}\left(\hat{\theta}_{T}\right)$:

$$
\bar{f}_{T}\left(\theta^{0}\right)+\frac{\partial \bar{f}_{T}(\bar{\theta})}{\partial \theta^{\prime}}\left(\hat{\theta}_{T}-\theta^{0}\right)
$$

The FOC becomes

$$
\underbrace{\left[\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \frac{\partial \bar{f}_{T}(\bar{\theta})}{\partial \theta^{\prime}}\right]}_{\xrightarrow[\rightarrow]{p} \Gamma^{\prime} W \Gamma} \sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right)=-\underbrace{\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta}}_{\xrightarrow{p} \Gamma^{\prime}} W_{T} \underbrace{\sqrt{T} \bar{f}_{T}\left(\theta^{0}\right)}_{\xrightarrow[\rightarrow]{\vec{p} \mathcal{N}(0, \Omega)}}
$$

Convergence:

$$
\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} \stackrel{p}{\rightarrow} \underbrace{E\left(\frac{\partial f^{\prime}\left(z_{t}, \theta^{0}\right)}{\partial \theta}\right)}_{\Gamma^{\prime}}, \quad W_{T} \xrightarrow{p} W, \quad \frac{\partial \bar{f}_{T}(\bar{\theta})}{\partial \theta^{\prime}} \xrightarrow{p} \Gamma
$$

We know that $\Gamma^{\prime} W \Gamma$ is invertible, because Γ is full column rank and W is positive definite. Then,

$$
\sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right)=-\left(\Gamma^{\prime} W \Gamma\right)^{-1} \Gamma^{\prime} W \sqrt{T} \bar{f}_{T}\left(\theta^{0}\right)+o_{p}(1)
$$

By CLT, we have

$$
\sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right) \xrightarrow{d} \mathcal{N}\left(0,\left(\Gamma^{\prime} W \Gamma\right)^{-1} \Gamma^{\prime} W \Omega W \Gamma\left(\Gamma^{\prime} W \Gamma\right)^{-1}\right)
$$

Consistent GMM Estimator

* Theorem (Asymptotic distribution of GMM estimator). Under
- Consistency of GMM estimator
- $f\left(z_{t}, \theta\right)$ is continuously differentiable with respect to θ
- Rank assumption with respect to Γ :

$$
\operatorname{rank} \underbrace{\left(E\left[\frac{\partial f\left(z_{t}, \theta^{0}\right)}{\partial \theta^{\prime}}\right]\right.}_{\Gamma}=p
$$

- $f\left(z_{t}, \theta\right) \mathrm{MDS}$
- CLT for MDS

We have

$$
\sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right) \xrightarrow{d} \mathcal{N}(0, V)
$$

where

$$
V=\left(\Gamma^{\prime} W \Gamma\right)^{-1} \Gamma^{\prime} W \Omega W^{\prime} \Gamma\left(\Gamma^{\prime} W \Gamma\right)^{-1}
$$

$>$ Mean-value expansion of the FOC of

$$
Q_{T}(\theta)=\bar{f}_{T}^{\prime}(\theta) W \bar{f}_{T}(\theta)
$$

FOC:

$$
2 \frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W \bar{f}_{T}\left(\hat{\theta}_{T}\right)=0
$$

Note that for $\tilde{\theta}_{T}$ in between θ^{0} and $\widehat{\theta}_{T}$ (may be different from different elements of \bar{f}_{T}),

$$
\begin{gathered}
\bar{f}_{T}\left(\hat{\theta}_{T}\right)=\bar{f}_{T}\left(\theta^{0}\right)+\frac{\partial \bar{f}_{T}\left(\tilde{\theta}_{T}\right)}{\partial \theta^{\prime}}\left(\hat{\theta}_{T}-\theta^{0}\right) \\
\Leftrightarrow \frac{\partial \bar{f}_{T}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \frac{\partial \bar{f}_{T}\left(\tilde{\theta}_{T}\right)}{\partial \theta^{\prime}} \sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right)=-\frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \underbrace{\sqrt{T} \bar{f}_{T}\left(\theta^{0}\right)}_{\xrightarrow[\rightarrow]{d} \mathcal{N}(0, \Omega)}
\end{gathered}
$$

By assumption,

$$
\begin{aligned}
\hat{\theta}_{T} \xrightarrow{p} \theta^{0} & \Rightarrow \tilde{\theta}_{T} \stackrel{p}{\rightarrow} \theta^{0} \\
& \Rightarrow \frac{\partial \bar{f}_{T}\left(\hat{\theta}_{T}\right)}{\partial \theta^{\prime}} \xrightarrow{p} \Gamma \\
& \Rightarrow \frac{\partial \bar{f}_{T}\left(\tilde{\theta}_{T}\right)}{\partial \theta^{\prime}} \xrightarrow{p} \Gamma
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \frac{\partial \bar{f}_{T}\left(\tilde{\theta}_{T}\right)}{\partial \theta^{\prime}} \xrightarrow{p} \Gamma^{\prime} W \Gamma \\
& \frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \xrightarrow{p} \Gamma^{\prime} W \\
& \frac{\partial \bar{f}_{T}^{\prime}\left(\hat{\theta}_{T}\right)}{\partial \theta} W_{T} \frac{\partial \bar{f}_{T}\left(\tilde{\theta}_{T}\right)}{\partial \theta^{\prime}} \sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \Gamma^{\prime} W \Omega W^{\prime} \Gamma\right) \\
& \quad \Rightarrow \sqrt{T}\left(\hat{\theta}_{T}-\theta^{0}\right) \xrightarrow{d} \mathcal{N}(0, V)
\end{aligned}
$$

where

$$
V=\left(\Gamma^{\prime} W \Gamma\right)^{-1} \Gamma^{\prime} W \Omega W^{\prime} \Gamma\left(\Gamma^{\prime} W \Gamma\right)^{-1}
$$

* Efficient GMM estimation
$>$ How to pick the efficient weighting matrix $W \rightarrow$ want to minimize the asymptotic variance of the GMM estimator $\hat{\theta}_{T}$
- The only flexibility we have is in choosing W. Since W is symmetric, the idea is to pick $W=\Omega^{-1}$ so that two of the "blocks" in V cancels out with each other:

$$
\begin{aligned}
W=\Omega^{-1} & \Rightarrow V=\left(\Gamma^{\prime} \Omega^{-1} \Gamma\right)^{-1} \underbrace{}_{\Gamma^{\prime} \underbrace{\Omega^{-1} \Omega}_{\Gamma^{\prime} \Omega^{-1} \Gamma} \Omega^{-1}} \Gamma \\
& \left.\Rightarrow \Gamma_{o p t}^{\prime} \Omega^{-1} \Gamma\right)^{-1} \\
& =\left(\Gamma^{\prime} \Omega^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

So we have the efficient GMM estimator with

$$
\operatorname{AVar}\left(\hat{\theta}_{T}^{*}\right)=\left(\Gamma^{\prime} \Omega^{-1} \Gamma\right)^{-1}
$$

$>$ Example. $f\left(z_{t}, \theta\right)=w_{t} \underbrace{\left(y_{t}-x_{t}^{\prime} \theta\right)}_{u_{t}(\theta)}$

$$
\begin{aligned}
\Omega & =E\left[w_{t} w_{t}^{\prime} u_{t}^{2}\left(\theta^{0}\right)\right] \\
& =E\left[w_{t} w_{t}^{\prime} \sigma_{t}^{2}\left(\theta^{0}\right)\right], \quad \sigma_{t}^{2}\left(\theta^{0}\right)=\operatorname{Var}\left(u_{t}\left(\theta^{0}\right)\right)
\end{aligned}
$$

Conditional homoscedasticity (given w_{t})

- $\sigma_{t}^{2}\left(\theta^{0}\right)=\sigma^{2}$
- Ω proportional to $E\left(w_{t} w_{t}^{\prime}\right)$
- Weighting matrix

$$
W_{T}=\left(\frac{1}{T} \sum_{t} w_{t} w_{t}^{\prime}\right)^{-1}=\left(W^{\prime} W\right)^{-1}
$$

The minimization problem is

$$
\begin{aligned}
\min _{\theta}[& {\left[\frac{1}{T} \sum_{t=1}^{T} w_{t}\left(y_{t}-x_{t}^{\prime} \theta\right)\right]^{\prime}\left(W^{\prime} W\right)^{-1}\left[\frac{1}{T} \sum_{t=1}^{T} w_{t}\left(y_{t}-x_{t}^{\prime} \theta\right)\right] } \\
& \Leftrightarrow \min _{\theta}\left[W^{\prime}(y-X \theta)\right]^{\prime}\left(W^{\prime} W\right)^{-1}\left[W^{\prime}(y-X \theta)\right] \\
& \Leftrightarrow \min _{\theta}[(y-X \theta)^{\prime} \underbrace{W\left(W^{\prime} W\right)^{-1} W^{\prime}}_{=P_{W}=P_{W}^{\prime} P_{W}}(y-X \theta)] \\
& \Leftrightarrow \min _{\theta}\left[\left[P_{W}(y-X \theta)\right]^{\prime}\left[P_{W}(y-X \theta)\right]\right] \\
& \Leftrightarrow \min _{\theta}\left\|P_{W}(y-X \theta)\right\|^{2}
\end{aligned}
$$

This means that the efficient GMM estimator corresponds to OLS of $P_{W} y$ on $P_{W} X$, or the 2SLS estimator of y on $P_{W} X$.

* The general case
$>$ Efficient weighting matrix $W_{T} \xrightarrow{p} \Omega^{-1}$, where $\Omega=\operatorname{Var}\left(f\left(z_{t}, \theta^{0}\right)\right)$.
$>$ How do we estimate it?
- 2-step GMM
- Iterated GMM
- Continuously updated GMM
* 2-step GMM
$>$ Step 1: get a consistent GMM estimator with an arbitrary weighting matrix W_{T} :

$$
\min _{\theta}\left[\bar{f}_{T}^{\prime}(\theta) W_{T} \bar{f}_{T}(\theta)\right] \rightarrow \tilde{\theta}_{T} \text { consistent }
$$

Usually, we pick $W_{T}=I$.
$>$ Step 2: use $\tilde{\theta}_{T}$ to get a consistent estimator of Ω :

$$
\Omega_{T}\left(\tilde{\theta}_{T}\right)=\frac{1}{T} \sum_{t=1}^{T} f\left(z_{t}, \tilde{\theta}_{T}\right) f^{\prime}\left(z_{t}, \tilde{\theta}_{T}\right)
$$

Use $\Omega_{T}\left(\tilde{\theta}_{T}\right)$ as the weighting matrix and

$$
\min _{\theta}\left[\bar{f}_{T}^{\prime}(\theta)\left[\Omega_{T}\left(\tilde{\theta}_{T}\right)\right]^{-1} \bar{f}_{T}(\theta)\right] \rightarrow \hat{\theta}_{T} \text { efficient estimator }
$$

Note that $\Omega_{T}\left(\tilde{\theta}_{T}\right)$ does not depend on θ.

* Motivation for other practical GMM estimation methods:
$>$ In practice, $\hat{\theta}_{T}$ or 2 S-GMM does not have good finite sample properties. So here are some improvements:
- Demean $f\left(z_{t}, \tilde{\theta}_{T}\right)$, as in practice it's not always equal to zero

$$
\Omega_{T}^{*}\left(\tilde{\theta}_{T}\right)=\frac{1}{T} \sum_{t=1}^{T}\left[f\left(z_{t}, \tilde{\theta}_{T}\right)-\bar{f}_{T}\left(\tilde{\theta}_{T}\right)\right]\left[f\left(z_{t}, \tilde{\theta}_{T}\right)-\bar{f}_{T}\left(\tilde{\theta}_{T}\right)\right]^{\prime}
$$

- Iterated GMM: idea is to keep running GMM until you find $\hat{\theta}_{T, k}$ close enough to $\hat{\theta}_{T, k+1}$.
- Step $k: \Omega_{T}\left(\hat{\theta}_{T, k}\right)$ or $\Omega_{T}^{*}\left(\hat{\theta}_{T, k}\right)$

$$
\min _{\theta}\left[\bar{f}_{T}^{\prime}(\theta) \Omega_{T}^{-1}\left(\hat{\theta}_{T, k}\right) \bar{f}_{T}(\theta)\right] \rightarrow \hat{\theta}_{T, k+1}
$$

Continue this process until $\hat{\theta}_{T, k+1}$ is close enough to $\hat{\theta}_{T, k}$ (e.g. $\bar{f}_{T}\left(\hat{\theta}_{T, k}\right)$ is close to zero)

- CU-GMM: integrate all the steps into one single minimization problem

$$
\min _{\theta}\left[\bar{f}_{T}^{\prime}(\theta) \Omega_{T}^{-1}(\theta) \bar{f}_{T}(\theta)\right]
$$

Note that we're now not minimizing a quadratic form, so this estimator is of a different class of estimators.

- Finite sample properties of this estimator are very good.
- Consistent and asymptotically efficient.
- However, in practice, there are some "local" optima where your optimization might get stuck \rightarrow need a lot of robustness checks.
* Weighted least squares

$$
y_{t}=h\left(x_{t}, \theta\right)+u_{t}, \quad E\left(u_{t} \mid x_{t}\right)=0
$$

$>$ Weighted non-linear least squares:

$$
\min \left[\sum_{t=1}^{T} \alpha_{t}\left(y_{t}-h\left(x_{t}, \theta\right)\right)^{2}\right]
$$

FOC:

$$
\begin{gathered}
\sum_{t=1}^{T} \underbrace{\alpha_{t}}_{w_{t}\left(\frac{\partial p \times 1)}{\alpha_{t}} \frac{\partial h\left(x_{t}, \hat{\theta}\right)}{\partial \theta}\right.}\left(y_{t}-h\left(x_{t}, \hat{\theta}\right)\right)=0 \\
\Rightarrow \sum_{t=1}^{T} w_{t}\left(y_{t}-h\left(x_{t}, \hat{\theta}\right)\right)^{2}
\end{gathered}
$$

Just-identification!

- We can always reinterpret WNLS as GMM with instruments

$$
w_{t}=\alpha_{t} \frac{\partial h\left(x_{t}, \hat{\theta}\right)}{\partial \theta}
$$

$>$ More generally, any M-estimator can be reinterpreted as GMM when looking at the FOC
$>$ In practice, in the linear case, the optimal weights are inverse of the variance (which is unknown). Since it is unknown, it has to be estimated in the first step.

- Efficient WLS:

$$
\min \sum\left[\frac{\left(y_{t}-h\left(x_{t}, \theta\right)\right)^{2}}{\widehat{\operatorname{Var}}\left(u_{t} \mid x_{t}\right)}\right]
$$

where $\widehat{\operatorname{Var}}\left(u_{t} \mid x_{t}\right)$ is the result of a first step.

GMM v.s. Maximum Likelihood (ML)

* Framework for ML
$>$ We have n iid observations: y_{1}, \ldots, y_{n}
> Parametric model

$$
Y_{i} \sim \underbrace{\ell\left(y_{i}, \theta\right)}_{\mathrm{a} \mathrm{pdf}}, \quad \theta \in \Theta \subset \mathbb{R}^{p}
$$

For example, $\theta=\left(\begin{array}{ll}\mu & \sigma^{2}\end{array}\right)^{\prime}$
$>$ (Joint) Density function for $\left(y_{1}, \ldots, y_{n}\right)$

$$
\ell_{n}\left(y_{1}, \ldots, y_{n} ; \theta\right)=\prod_{i=1}^{n} \ell\left(y_{i}, \theta\right)
$$

$>$ Likelihood: $\theta \rightarrow \ell_{n}\left(y_{1}, \ldots, y_{n} ; \theta\right)$
$>$ MLE $\hat{\theta}$:

FOC:

$$
\hat{\theta}=\arg \max _{\theta \in \Theta} \prod_{i=1}^{n} \ell\left(y_{i}, \hat{\theta}\right)=\arg \max _{\theta \in \Theta} \sum_{i=1}^{n} \ln \left(\ell\left(y_{i}, \hat{\theta}\right)\right)
$$

$$
\sum_{i=1}^{n} \frac{\partial \ln \left(\ell\left(y_{i}, \theta\right)\right)}{\partial \theta}=0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ln \left(\ell\left(y_{i}, \theta\right)\right)}{\partial \theta}=0
$$

Note that the latter is the mean of some moment conditions

$$
E\left[\frac{\partial \ln \left(\ell\left(y_{i}, \theta^{0}\right)\right)}{\partial \theta}\right]=0
$$

$>$ What about other orthogonality conditions or other moment conditions?

- Consider $f\left(y_{i}, \theta\right)$ such that $E\left(f\left(y_{i}, \theta^{0}\right)\right)=0$. Perform an affine regression of $\frac{\partial \ln \ell}{\partial \theta}$ on f (since both terms have mean zero, there's no need for a constant term):

$$
\frac{\partial \ln \left(\ell\left(Y, \theta^{0}\right)\right)}{\partial \theta}=\beta f\left(Y, \theta^{0}\right)+u
$$

with

$$
\beta=\operatorname{Cov}\left[\frac{\partial \ln \left(\ell\left(Y, \theta^{0}\right)\right)}{\partial \theta}, f\left(Y, \theta^{0}\right)\right]\left[\operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\right]^{-1}
$$

By definition,

$$
\begin{gathered}
E\left[f\left(Y, \theta^{0}\right)\right]=0 \Leftrightarrow \underbrace{}_{E\left[\frac{\left[f\left(Y, \theta^{0}\right)\right.}{\partial \theta^{\prime}}\right]=\Gamma} \Rightarrow \underbrace{\int \frac{\partial f\left(Y, \theta^{0}\right)}{\partial \theta^{\prime}} \ell\left(Y, \theta^{0}\right) d Y}_{\operatorname{Cov}\left[f\left(Y, \theta^{0}\right), \frac{\partial \ln (\ell)}{\partial \theta}\right]}+\underbrace{\int f\left(Y, \theta^{0}\right) \underbrace{\frac{1}{\ell\left(Y, \theta^{0}\right)} \frac{\partial\left(Y, \theta^{0}\right) d Y=0}{\partial \ln \left(\ell\left(Y, \theta^{0}\right)\right)}} \partial} \\
\Rightarrow \frac{\partial \ln \left(\ell\left(Y, \theta^{0}\right)\right)}{\partial \theta}=-\Gamma^{\prime}\left[\operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\right] f\left(Y, \theta^{0}\right)+u
\end{gathered}
$$

The explained variance is equal to

$$
\Gamma^{\prime}\left[\operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\right]^{-1} \operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\left[\operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\right]^{-1} \Gamma=\Gamma^{\prime}\left[\operatorname{Var}\left(f\left(Y, \theta^{0}\right)\right)\right]^{-1} \Gamma
$$ This is the inverse of the variance of efficient GMM with moment condition f.

$$
\Gamma=E\left(\frac{\partial f}{\partial \theta}\right)=-\operatorname{Cov}\left(f, \frac{\partial \ln \ell}{\partial \theta}\right)=-\mathcal{J}^{-1}=\text { Cramer-Rao lower bound }
$$

"Best GMM" is the one where we choose f to maximize the explained variance, i.e. choose $f(Y, \theta)=\frac{\partial \ln \ell(Y, \theta)}{\partial \theta}$. Therefore, GMM is MLE. More specifically, in this case,

$$
\operatorname{Var}(f)=\operatorname{Var}\left(\frac{\partial \ln \ell}{\partial \theta}\right)=\mathcal{\jmath}
$$

where \mathcal{J} is the Fisher information matrix.
> Conclusion:
Provided the parametric form of the density of the data $\left(y_{1}, \ldots, y_{n}\right)$ is known (here we focused on iid).

- Result: GMM with optimal orthogonality conditions $\frac{\partial \ln \ell}{\partial \theta}$ is numerically equivalent to ML.

