Econ 837 Econometrics Jan 10, 2011

Introduction

«» QGrades:
> Midterm 30%

» Assignments 20% (about 3 or 4, may use Matlab)
» Final 50%

+ Econometrics is interested in drawing inferences about parameters. We have:
> A sample of observations x = {x,, x5, ..., X, } with joint distribution f;, (x)
» A model (based on econ theory)

» Parametric: p,,(x|0), the likelihood function of x given a parameter & — this is the
focus of this course

e C(lassic
e Bayesian
= Non parametric: not a fixed 0, but a potentially infinite dimension of parameters
= Semi-parametric: in-between parametric and non-parametric
» Goal: to draw inference on 6 given x.

¢ Parametric Methods
1. Classic inference
= 0 has a true value 8, which is unknown
e Assuming that 8 exists means that p,, (x|0,) = f,,(x)
= Need to find 6,
e Find estimated 8
e Tind distribution of 8, p(8|6,)
¢ Exact finite sample distribution — but this is rare
¢ Approximations
» Asymptotic, n — 0
» Bootstrap (draw pseudo-random samples)
2. Bayesian inference: assumes that 8 is a random variable from a probability distribution
= fisar.v.
e No true value 6,
e 0 has an a priori density 7 (8)
= Goal is to find an a posteriori density p, (6]x)
7(0) pa(xl6) = p(x, 6)

a priori likelihood joint
with
p(x,6)
flx) = ———

K/

¢ Properties of estimators (Note: an estimator is a statistic.)
> Unbiasness: EO =6, (1* moment)
> Efficiency: 8, is more efficient than 8, if Var(8,) < Var(8,)
= (Classify the estimator according to a loss function
e Most common: MSE
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E [(@ — 90)2] = Var(9) + Bias?
E [(9 —60)(6 - 90)’] = Var(9) + (Bias)(Bias)'

p(62)

MSE(8;)
MSE(8,)

MSE(8,)
0, i’ 0
e MSE does not provide complete classification

e Clearly, 8, is not admissible because it is dominated by 8, and 85 across all
possible values of 8. However, we cannot rank 8, and 8.
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Linear Regression Model (Chpt 1)

% Basic assumptions
» Dependent/LHS variables (Regressands): y
> Explanatory/RHS variables (Regressors):  x*, k =1,2,..,K
» Goal: explain y as a function ofx¥, k=12,..,K

«» Data:
> Indices:
=  Cross-section: i=1,2,..,n
= Time series: t=12,..,T
» Dependent variable: y;
V1
y=1|Yi
Indmx1)

» Independent variable: x;

]

szlxikl X; =

-
e o

same variable, different observations same observation, different variables

X} X111 X1z v X
! x x cee x
X 21 22 2K
— X =[xt x2 ... xK]=|"2%|=]" ) .
(nxK) :
X Xn1 Xnz2 " Xnklxk)
'
X11 X1k X1K T
[ Xi1 Xik Xik ]Xl
Xn1 Xnk Xnk
——
Xk

% We want to explain y as a linear function of x*

K K
~ k ~
Y~Zbkx e Yi~zbkxik

i.e. equality between vectors in R component by component.

K
Yi = Z bxy + W
N——
k=1

error term
» The error term (or disturbance) is connected to the model

= Note: do not confuse the error term with the residual (the realized error)
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= The residual is connected to the estimation method
e E.g  OLS estimation — bj, with OLS residual

K
Vi — z brxi = u;
=1

GLS estimation — by, with GLS residual

K

* i *

Yi— Z brxi = u;
k=1

» We need some assumptions about the probability distribution of the r.v.

% Model is implied by restrictive assumptions
» Assumption 1.1. Linearity
y=Xb+u
= Example in the book about wage equation
WAGE; ~ eP1eb2SighsTENighaEXP;
log(WAGEl) = b1 + bZSi + b3TENl + b4EXPl + Uu;
» Assumption 1.2. Exogeneity
E(u|X)=0
= Reminder: Law of Iterated Expectations.

E| E@Ww)

N——— ———
r.v.that depends on W

=EZ

Here,
E(X)=0 2 Eu=0
This is the exogeneity assumption. Note that the implication doesn’t go the other way.
»  What happens if Eu = 0 but E(u|X) # 0?
e Endogeneity or simultaneity problem. This happens when
¢ Some factors are observed by economic agents but not by the econometrician.
¢ These observations are taken into account by the agent to determine x;
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Exogeneity Assumption of the Linear Regression Model

% The linear regression model

K
y= z kak
k=1

K
1) y; = Z brxy + u;, i=1,..,N linearity
k=0

2 assumptions:

2 E(wlX)=0 = E(w) =0 (strict) exogeneity
» Implications of exogeneity assumption.
1. E(u;) = 0. This is by the Law of Iterated Expectations. Consider

E(E(wlX)) = Z(E(uilX = x))P(X = x)

=Z<Zu-P(ui =u|X=x))P(X=X)

:z w-P(u; =ulX = x) P(X = x)

u

=ZZu-P(ui =u,X =x)
:Zx:uu-ZP(ui =u,X =x)
:Zu:u-Px(ui =u)

u
= E(u;)
v E(u;|X) = 0 by the exogeneity assumption
~ E(EwlX)) =E(0) =0=E(w)

2. In any observation, each regressor is orthogonal to each one of the error terms, i.e.

E(xpu)) =0, Vij=1.,n  Vk=1,..K
[E(xau)] o0
E(xjui) = E(szul) = O , Vi,j=1,..,n

E(ijui) 0 (Kx1)

e Proof. Since x;j is an element of X, the exogeneity assumption implies that

E(ui|xjx) = E[Ewi|X)|xj] = 0
Then, it follows that
E(xpewr) = E[E Gt |xe) | = E i E (wifei )| = 0.
3. Regressors are uncorrelated with the error terms:
Cov(xi,u;
Cov(xjk,ul-) = E(xjkui) — E(xjk) E(u))=0 = Prjrou; = (—]kl) =

me =0 Toxjic Ty
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+» Example. Production.
ln(Qi) = bl + bz ln(Ll) + u;

elasticity
coefficient

» E(u;|L;) = 0 (OK to assume E (u;|L;) = 0)
» Suppose the firm has information that is not observed by the econometrician

u; = V; + Wi
N N —
observed by the firm unobserved

but not by the econometrician by both parties
Then,
— 1b2 by v; LWy
Q; = L;* e”1et e"i
=Ai
= Problem of the firm — maximize expected profit
b .
rnLaX[pAl-Ll.ZE(er) — WLl-]
i
FOC w.r.t. to L;

pA;b, L7 E(e") = W
1

W\b-1 _1
e L= (?) 7 (bpAE(eWi))P2F1

InL; = 1(W>+ L n(bE(ev) + InA
i bz—ln 1% 1—b2n z ¢ 1_b2ni
=a
< =a+ In 4;
—bzu-v—/
=bq+v;
=a+1_b2(b1+vi)

& v;=0-by)InL;— (1 —by)a— b,
= Exogeneity assumption:
E(In(Qy) IL;) = by + by InL; + E(v; + wi|L;)
=0 by exogeneity
= bl + b2 In Li + E(WllLL) + E(vilLi)
e Note that the exogeneity assumption can be stated in two ways
2. E(y|X)=Xb+0
Because w; is unobserved, it is likely OK to assume E (w;|L;) = 0. But,
E(v;|L;)) = E[(1 = by)InL; — a(1 — by) — by|L;]
=—a(l—by)—b; +(1—by)InL;

=a

Then,
E(InQ;|L;) =b; +b,InL; +a+ (1 —by)InL;
=b+a+1-InL;
e Therefore, exogeneity implies
E(ulX) =0 o ElX) =Xb
when y; = X/b + y;
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e Here
ani=b1+b21nLi+ui = E(anilLl’)zbl‘l‘bzlnLi

» More generally, when there is a link between the error term, u;, and the explanatory
variables X;, there will be a simultaneity issue or endogeneity issue.
= This issue leads to simultaneity bias
* In our example, (1 — b,)

% Notations again

X1

yi=xb+u, X=[x1 x?2 .. xK]=|"7

Xy

> Xk (N, 1)-vector, with superscript denoting the k™ RHS variable

> X (K, 1)-vector, with subscript denoting the i"™ observation
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Property of the Matrix X

o,

% Assumption 1.3. No multicollinearity. Rank(X) = K, i.e. full-rank (or full column rank).

It means that the K columns of X (i.e. X kk=1,.. K ) are linearly independent.

» Note. Max. linearly independent rows = max. linearly indep. Columns = max. size of
non-zero (or non-degenerate) minors (or submatrices)

» Interpretation 1. If there is k, such that

Xko = Z a Xk

k#kg

X*o does not help me explain y.

= In theory, this assumption has cost 0 (i.e. can make this wlog).

= In practice, we can have almost-perfect multicollinearity. This will create problems
when we try to invert the matrix (X'X).

» Interpretation 2. Suppose Xb = 0. Then the no multicollinearity implies necessarily that
b =0, i.e. b, = 0. So when we make the assumption of no multicollinearity, we are also
assuming that the model is meaningful.

» Interpretation 3. A theorem in matrix algebra states that if the matrix X is of full column
rank, then X'X is non-singular.
* Proof. Let a be a K X 1 vector.

2

a'X'X)a=Xa) Xa) = )b(g >0

(Nx1)

This means that (X'X) is a positive matrix. Thus,
a'X'Xa=0 & Xa=0
+ X is full rank
. Vk =1,...,K : X¥ is linearly independent

K
(= (ZQRXRZO = C(k:O, szl,,K)

k=1
S Xa=0 = a=0)
e This is a useful way to show that a matrix is non-singular. That is, it is equivalent
to showing that it is positive definite (as long as I know it is positive).
¢ Let M be an n X n matrix. Then,
M is positive (or positive semi-definite) if for all (n X 1)-vector
a'Ma =0
M is positive definite if for all (n X 1)-vector a
a’'Ma>0 and a’'Ma=0 © a=0

> Interpretation 4. X'X = YN, x;x/. Suppose x; are iid. Then by the WLLN
N

1 P
! !
5 E xix; — E(x;x;)
i=1 true mean

sample mean
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= Slutsky’s Theorem.

N
1
det (ﬁz xlxl’> Z, det[E (i x)]

dn
Recall convergence in probability

N—-oo
P(ldy —d| >€)—>0, Ve>0
If we know that d > 0,

dy N dy N
P(IdN—d|>E)—>O o P(|d,v—d|s§)—>1

d\ N
= P (dN > 5) —1
So Rank(X) = K & det(X'X) > 0. Thus, for N large enough, %Zﬁ\’:l x;x; should
be invertible (as long as det[E (x;x;)] > 0).
*  Question: Why should we maintain this assumption?
o E(x;x;)is @ (positive semi-definite):
' E(rx)a = E[(a'x) (0)] = E[(x{@)?] = 0
e Positive definite?
dE(xixD)a=0  E[(x(a)’]=0 & x/a=0 a.s.
a # 0 only if there are multicollinearities.
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Geometric & Statistical Interpretations of Least Squares

% Naive approach:

Choose b such that

Y
Z
o
=+
o
o
<
o
(¢]
=h
2.
=
S
=
o
=
©)
i

So the problem is

n K
min Z | — Z byx; <& min
beRK (y‘ etk beRK

(y —Xb)' (y — Xb)

ER™

L(X)

L(X) ={Xb:b € RK} = {3K_ b X*: b, €R, Vk} and Xb € R"
L(X) is a subspace of R™

> b is characterized by K orthogonal relationships
(y—xb) L X*, vk & X¥.(y—-xb)=0
T ern | ERm
e X(y-Xxb)=0
system of K linear equations
o X'y=X'Xb
e |b=XX)"X'y

++ Notations: matrix of orthogonal projection
Py : matrix of orthogonal projection on L(X)
Pyy=Xb=X'X)"1X'y
» Should be true for all y
» Can identify Py as
Py = X(X'X)71X’

> Matrix of orthogonal projection on the orthogonal of L(X), i.e. L(X)*:

My =1,—Px = Myy=,—Px)y
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=y —Pxy
=y—Xb
=U — OLSresidual
» Note that
y=Xb’+u © u=y-—Xb°
= Myu=1— MyXb°
=0 “XDOEL(X)
Mathematically,
MyXb® = I,Xb° — X (X'X)"1X'X b°
=I,
= Xb° — Xb°
=0

» Properties of Projection Matrices
= Idempotence and symmetry are necessary and sufficient conditions for projection
matrices
e Symmetry: A = A’
e Idempotence: A = Aforany £ € N

% Application: the Frish-Waugh Theorem (cf. P.72, ex.4)
» Motivation:

y=Xb+Zc+u= [XSZ](IZ)+u
where X is (n X K;) and Z is (n X K;).
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Geometric Interpretation of Linear Regression (cont’d)

«» Consider the true model;

y=Xb+Zc+u:[X§Z](lZ)+u

» Question: How bad/wrong is it to regress Y on X only?
» Assumptions for the true model:
(i) Ewl|X,Z)=0
(i) Rank([X : Z]) = K, + K,
» Assumptions for the “reduced” model without Z: y = X + v
(HEWw|X)=0
(2) Rank(X) = K;

+ Compare (i) and (ii) to (1) and (2).
» Easy to see that (i) = (2)
» What about (i) v.s. (1)?
E(|X) =EXb+ Zc + ulX)
=Xb+ E(Z|X)c + E(ulX)
=0
=Xb+ E(Z|X)c
* Inorderto get (1), I need E(Z|X) to be linear in X, i.e.
E(Z|X) = XT
Thus, the true model doesn’t imply the “reduced” model

¢ Even if the “reduced” model is not necessarily implied by the true model, I can still perform
OLS:

OLSgequced B = (X’X)_lxly

OLS, e (l;’) = [()Z() x z)]_1 ()Z() y

> b=?bvs. B?
% Frish-Waugh Theorem.
b= (X'M,X)"'X'M,y
» Proof.
(&) = aremgnly - b + 201"
Cc
C

= Step 1. Concentrate w.r.t. c. For given b, minimize w.r.t. ¢ only. Get c(b)
min||(y — Xb) — Zc||?
c
Get c(b) such that
Zc(b) = P;(y — Xb)
= Step 2. Minimize the concentrated objective function w.r.t. b.
2

mbinlly—Xb—PZ(y—Xb)Il2 & mbin Mzy — M;X b
y X

(X'%) 'R’y = (X'MX)"1X' My

= b
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» Remark. In Practice,
v/Z = P;,y = M,y residual
Xk/z7 = P,X*¥ = M,X* residual
Then,
My / M,Xk, vk
TMX

» Remark. Corollary of FW Thm. If M, X = X, then
b=XX)"Xy, (=5)

So M, X = X. This means that
X17Z o xk127t  vk¢
n
(= inkzw = O, Vk,‘g
i=1
n
1
And ;Z XpZip =0,  Vk ¥

i=1
But this does not mean that X* and Z* are not correlated. Not quite Cov between X* and

Z*, only orthogonality condition.

% Next we consider the statistical interpretation of OLS
» Finite sample properties
» Interpretation
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Finite Sample Properties of OLS

% Recall the standard assumptions
(H)y=Xb+u
2) E(ulX) =0, a.s.
3) |X'X| >0, a.s.

2 additional assumptions:
4) Var(u|X) = 6?I,, a.s. — homoscedasticity
(5) ulX ~ N (0,0%1,)

¢ Properties:
» Under assumption (1) — (3)
E(b)=»b
» Proof. Use the law of iterated expectations:
E(b) = E[E(5IX)]
= E[E[(X'X) 7 X"y|X]]
= E[(X'X)T'X"E(y|X)]
= E[(X'X)"1X'Xb]
=b
» Under assumption (1) — (4)
Var(b) = E[(X'X)™'0?]
* Proof. ]
Var(b) = E (b — Eb)(b — Eb) |

=E[(b-b)(5-b)]

= E[(X'X) 7 X uu'X(X'X)™"]

=E|[X'X)"X'E[uv'|X] X(X'X) !
| =0t
=o?E[(X'X)71]
where
b—b=XX)"Xy—b
=X'X)"'X'(Xb+u)—b
=X'X)"X'u

+ Gauss-Markov Theorem (BLUE).
Under assumptions (1) — (4), the OLS b is BLUE (best linear unbiased estimator). That is,
for any linear (w.r.t. y) estimator,
B=Cy, s.t. Eb=5b
we have

Var(b) « Var(h) < (Var(E) - Var(B)) is psd.

%

% Cramer-Rao Theorem.
Under assumptions (1) — (5), b is BUE (best unbiased estimator).
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» Property: Under assumption (1) — (5)
b —b|X ~N(0,62(X'X)™1)
* Proof. Since u ~ N (0,521),
b—b=XX)""X"u
Note this is not the same as the central limit theorem, because we have a finite sample.

» Remark. If we want the unconditional distribution of (E — b), there are two options:
= Assume fixed regressors
= Asymptotic theory (i.e. as n — )
» Remark. Standardize (5 - b|X ):
X'X)vz
%(b — b|X) ~ N (0,1)
= This does not depend on X.
= This is the unconditional distribution, i.e.
X'z
%(b —b) ~N(0,1)

* In general, o is unknown! — we need an estimator of ¢ to use the previous result.

n
1 1
A2 — 82 — !
o _n—KZu n_KuMXu
l=
e Proof (62 is unbiased).

1 1 1
E(6%) = n——KE (u'Myu) = —KE[tl‘(u'MXu)] = n_—KE(tr(uu’MX))

—— n-—
univariate
! E[E(tr(uu'My))|X] = ! E|tr| Euu'|X)M
_n—K reuu My _n—K r Z:ZI X
2
o
=——7F[tr(M
— Elr(My)]

My =1, — X(X'X)"1X'
tr(l, — X(X'X)~1X") = tr(I,) — tr(X (X' X)~1X")

=n—tr|(X'X)(X'X)1

Ix

=n—K
where the trace has the following property:
tr(ABC) = tr(BAC) = tr(CAB)
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Statistical Interpretations of OLS

+» Recall the model
K

Vi = a + z bxi + u;
constantterm  p—=1

Matrix of explanatory variables:

1
Dlxixz...xx =[ en  iX
i vector of 1's

» Adding a column of 1’s to the regressors makes the linear regression a affine regression.

y i residuals

L(en,X) Xb

» Orthogonal conditions between the residuals and the explanatory variables.
{e,’l(y —de, — XB) =0

X¥(y —ae, —Xb) =0’

We have K + 1 linear equations to find K + 1 parameters b and @. Note that

n K n
e,’l(y—den—Xl;)zo = Xyi—nd—25k<2xik>:0
i=1

k=1 i=1

Vk=1,..,K

K
dividebyn < y—a—Zbkikzo
k=1

K
(=4 ﬁ=)7—ZBkXK
k=1

= (=0

= 1 is the empirical average of the OLS residuals. So by including a constant term, we
are imposing that on average ??? is correct.
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= With a constant term, the average residual is zero, and the average point belongs to
the regression line
= [fwe do not introduce the constant term,
9 =Xb
Then the regression line goes through (0,0). However, this does not minimize the
sum of squares.
e If, in addition, you want the average point to belong to the regression line, then
the regression line is completely determined.

» Plug in the expression for @

K
y— ey~ Xb= (y=yen) = ) By (X* — X¥e,)
—_— ~———
y k=1 Xk
mean deviation mean deviation
Rewrite the orthogonal condition

o 1 -
X'(3-Xb)=0 & EX’()“/—Xb) =0

1 . -
@Exk(y—)(b):o, Vk=1,.. K

where
n

lxk'y:l X (y; — 7
n n z ik\Yi =Y )
is the sample (empirical) covariance betweeln 1xl-k and y;. Notation: CoVeny (X, yi)-
b= (X%) Ky = (lm)_l <l)?'y)

n n

Varemp(xi) CoVemp(xi¥i)
* The OLS estimator is the ratio of the Covey,y, (x;, y;) and Varg,, (x;).
= We can make the interpretation of Var-Cov only because we include the constant

term in the regression. Without the constant term, we only have the orthogonality.
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Geometric Interpretation of OLS in the Space of Random Variables

+* Recall

n
IR |1 )
(a,b) = arg min [EZ(yi —a- xl-b)zl
i=1

space of R™
\) l
?
(@ b% = arg mibn E(y; —a—x{b)
@ space of r.v.
» InR™:

L(en,X) =a.+Xb

» In space of r.v. that are square integrable,
L(1,x;) EL(y;|x;) = a+x/b

= The norm (or distance) is

lull = v Eu?,
(u,v) = E(uv), (the inner product)
The inner product is the extension of the norm, so (u, u) = ||u||.

X/
°e

Computation of EL(y;|x;):
{[)’i—(a‘Fx{b)] 11 {E(}’i—a—x{b) =0 (%)
lyi—(a+x/b)] Lxy, Vk=1,..,K El(y;—a—x{b)xy] =0 Vk
From (*) we get
a=E(;)—E(x)b
Plug it into the second expectation:
=0

E[(y; — {Ey; —a— Ex(bDx;] =0 = E[(y; —Ey)x] —E|(x; —Ex;))' b x;

> Elx(x— Ex)']b = E[i — Ey)x]

Var(x;) Cov(xyy;)

1XK KXx1 ]

If Var(x;) is nonsingular,
-1
b= (Var(x)) Cov(x;y;)
» This is NOT an estimate!!! It is a population value (as opposed to a sample value)
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» Conclusion:
EL(y;lx;) = a® + x/b°
with
a® = Ey; — Ex/b°
{bo = (Var(xi))_lCov(xl-,yi)
same formula as the one we got for the estimates @, b in the space of R". But now we
have population moments.

» Remark. Why do we have Var(x;) nonsingular?
e Var(x;)isPSD a € R¥, a’'Var(x;))a = Var(a'x;) =0
e Var(a'x;)) =0 & a'x; constant
r.v.
e Therefore, Var(x;) is nonsingular if and only if no linear combination of x; is

constant (except if @ = 0)

1o e P .. .
e X X =Vargy, (X) — Var(x;) [under iid assumption]

» Remark. y; = a® + x/b° + u;
o EFu; =0
e E(ujx;) =0 or Cov(x;,u;) =0
e a% b0 are defined by the above
e These are not assumptions
e EL(y;|x;) is the best linear predictor of y; as an affine combination of x;; that is,
it is the solution of the minimization of

E|(v: — ELOilx))’| = ElGyi — a — x{b)?]

» Remark. E(y;|x;) is the best predictor of y; as a function of x;; that is, it is the

solution of the minimization of
2 EWl' =0
E [(yi —f(x) ]' yi =) +wy, Cov(wy, g(x)) =0, Vg

Vi

|_l
H(x;) Eilx;)

Claim: the solution of the minimization problem is

(yi—EQilx)) Lg(x), Vg
Proof. Consider

E(yig(x) — EGrilx)g(x)) = 0
= E(yig(x) — E[EGig)Ix)] = E(vig(x)) —E(yig(x))) = 0

= Corollary 1. EL(y;|x;) = E(y;|x;) if and only if E (y;|x;) is affine with respect to x;.
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= Corollary 2.
EL{EGix v = ELOiIx
Proof. Need to show that

E(yilx;) —EL(y;lx)| L (1,x;)

what I project  candidate for
projection

Introduce y;:
[E(yilx;) — yi] — [vi — EL(y;lx;)]

1(1,x7) 1(1,x7)

¢ Final comments.

> Exogeneity assumption in y; = a® + x/b° + u;:
= Strict exogeneity: E(u;|x;) =0
=  Weaker exogeneity: E(u;) = 0, Cov(f(x;),u;) = 0 forall f

» Is it true that E(y;|x;) is linear?
* True with: E(u;|x;) =0 = x; and u; are stochastically independent

» What do we do when it is not true (i.e. E(y;|x;) is not linear)?
* Add some terms to account for nonlinear effects, e.g. x5 or x;.X;, or more

complicated functional form
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Large Sample Theory (Chapter 2.3)

o,

% Maintained assumption: (y;, x;) are jointly identically distributed (i.d.)
» Consequence: (y;, x;, u;) are jointly identically distributed
> Remark. Var(u;) = o2, which is a constant (i.e. independent of i). But there can be
heterogeneity at the conditional level, i.e.
Var(ux;) = a%(xy).
»  With the assumption E (u;|x;) = 0, we can write:

Var(u) = E@w?) =E (E(ui2|xi)) = E(Var(ulx)) = o?=E(c?(xy))

% Law of Large Numbers (LLN). Consider z;, i € N, i.d. and integrable (i.e. E|z;| < o0).
> LLN:

n

1

— E zi =2z, > Ez; =Ez
n.
i=1

» Theorem 1 (SLLN). Let (z;);ey iid and 1ntegrable

Zn SE Zi
Recall the definition of almost sure convergence:

P(Tlli_rgo(fn —Ez) = 0) ~ 1.

> L2-LLN:
LZ
Z, — Ez;

Recall the definition of L? convergence:
LZ
w, —w, < E(w, —WO)ZRO
This requires w,, to be L? integrable.
= Note:
E(wy, —wo)? = Var(wy, —wo) + [E(w, — wy)]?
>0 >0

So
Var(w,, —wy) —0
E(w, —wy)?—0 & noe
( n 0) n—oo E(Wn—Wo)—>O
n—-oo
In our case: Ez; is a constant.

L2
z, > Ez; © Var(z,) — 0

_ AN
Var(z,) = Var (;Z zl-)

i Var(z;) + — Z Cov(zl, ])
i=1

i,j=1
i+j
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o? N 2 c ( )
= — +— E ov(z;, z;
n n2 2]
— 1<i<jsn
_)0
n—-00

n(n-1) terms

> Theorem 2 (L2-LLN). If (z;);en such that Ez? < oo, and Ez; and Var(z;) independent

on i, then
LZ

_ 1
z,— Ez; © 3 z Cov(zi,zj)TQO

1<i<jsn

> Theorem 3. Both the SLLN and L?-LLN imply the WLLN (convergence in probability).
* Note that there is no clear logical relation between almost sure convergence and L2
convergence.

< Consistency of OLS estimators (i.e. estimator of b and ¢2)
(yi' xi) i.d.
yi = xib + u;, with {E(u;lx;) =0
0% =Var(u;)
» We know 1 estimator, i.e. the OLS, by solving
X (—=Xb)=0

KXn
Want to compare the OLS estimator with the IV-estimation
W'(y—-Xb)=0

where W = [w! w? -« wf]

= OLS is a special case for [V-estimation.

> Motivation:
E(y; = x;b°|x;)) =0 & E[f(x)(y; —n;p®)] =0, Vf
where b° is the true unknown value.
fh('): h= 1,...,H, S.t. Wih=fh(xi)
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The IV Estimator

«» Consider a matrix

Waoxm = [wt w? - wH]

If I assume:
E(uilx;)) =0 & E(y;—x/blx;) =0
© E[f(x); —xb)]=0, Vf
If I define wyy, = fi,(x;).

%

» Can we find b,, such that
n
1 , , "
= waOi - X1 =0, Vh & W(y-XB,)=0
i=1
© W'Xb, =Wy
HxK
Need H = K, because otherwise there will be more parameters than equations. If the number
of instruments is the same as the regressors, then the matrix W'X is invertible. However, if

there are more instruments than regressors, then we need to use “pseudo-inverse”.

» Consider a left pseudo-inverse of W'X, call it I1,,:
I, W'X) =1Ig
K\‘;H

+ Definition. Under the maintained assumptions
Rank(W) =H
Rank(W'X) =K
Define:
Bw =,W'y
where I1,, is as defined above.

» Example of matrix IT,,. Let () be a positive definite matrix of size H

-1
Hn=<X'W Q W'X) X'W Q
—_—— W —— v

KXH HXH HXK KXH HXH
KXK

The inverse exists because whenever a full-rank matrix is multiplied by another full-rank
matrix, the product is still full rank.

Note that this is a class of pseudo-inverse, because a different Q will produce a different
I1,,.

Special case where H = K:
I, =WXx) ot x'w)yx'w)a=w'x)?
= b,=W'X)"'W'y
If we choose W = X, then we’ll get the OLS estimate.

In general, H > K, so there is no unique b,, — we can talk about optimal choice of Q.
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o,

% Is b, consistent? Recall the model y = Xb° + u.
b, =M,W'y = b, =1L, W'[Xb° + u]
M,W'Xb° + I, W'u
O+ M,W'u

?
—0

. p . .
» Assumption 1. nll,, — II, where II is a fixed full-rank matrix.
=  Why is this assumption reasonable?

e (Case where H =K.

-1
w'X
Hn = (W’X)_l = TlHn lT

Remember that W' is (H X n) and X is (n X K). By LLN:
WX 1>, p ,
— = —z wix; — E[w;x;]
n n&d
Here, Assumption 1 is equivalent to the LLN for (W'X) (or w;x;).

e (Case where H > K.

xXw wx\'x'w
nll,, = Q Q

n n n

where
X'W »p , W'X » ,
- E(x;wy), — E(w;x;).

So, same here, we need LLN for (w;x;)
= In sum, the assumption is used to
b, = b° + 1, W'u
W'u
-+ (12)

» Assumption 2. The WLLN for (w;u;)

1 p
- W'u — E(w;u;)

» Assumption 3. E(w;u;) = 0. That is, w; ’s are valid instruments. Non-correlation
between w; and u;

~ P
Therefore, b,, — b°.

% Theorem. Any IV estimator b,, = I1,,W'y such that
= WX =1,

p
= nll, —>1II
= W are valid instruments
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= WLLN for (Wiui)i

. . . .~ b
are satisfied is weakly consistent, i.e. b,, — b°.

% Consistent estimator of 2.

n
1
0% = E(u?) = plim [;Z uf]

i=1
» The problem here is that u;’s are not observed.
» 1, are residuals and observed.

% Theorem. Given WLLN for (u?), (x;x}), and (x;u;). If b is a consistent estimator of h°,

then
n

i=1

=|>—=
q

where @l; = y; — x;b.

> Proof.
1 n
6 == 0

i=1

1 n

~ (yl—xb)

i=1

1% 2
== [x{b° + u; — x]b]

i=1

n n n
= N (0B 4 Y [ (2~ B)
nl=1 n1=1 i=1
L

> Remark. The above estimator 62 is consistent, but usually biased in small/finite samples.
» For OLS,

u? > E6?<o?

S|
S|

n
{2 <
L
=1

n
i=1
=  Proof.

n
:E:iif== I2ll? = IMxyllI> = IMxull® < [lull?
i=1
The last inequality comes from the orthogonal projection. We have equality if and

only if Myu = u.
E||Myu||®* < E||lul|* © nEé? < no?. ﬁ

Myu
< What is the difference between the two?
E[lIMxull*|X] = E[u'MxMyxu|X]
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= E[u'Myu|X]
= E[tr(u'Myu) | X]
= tr(E[Myu'u|X])
=tr (MX E(u’ulX))
0-2
= (n—K)o?
For OLS estimator under the assumption of spherical variance (i.e. E(u'u|X) = ¢?),
n

1 1
E(lall?|X) = (n — K)o? = ——|i Zz—Za?
(a0 = (=100 =l == ) @
1=
So the unbiased estimator %Z?ﬂ i underestimates g 2.

When n > (n — K) and n become closer and closer to each other.
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Spherical and Non-Spherical Variance of the Error Term

% Recall that Var(u) = o?1. Today we want to consider the “non-spherical” case.
» Can we standardize the multivariate u?

un,l ~ N(O, 'Q)
0= 91/291/2’

% Any symmetric matrix {) can be decomposed as:
Q = PAP’
where PP’ = [ (i.e. P is orthogonal matrix) and A is diagonal.
» Note that () is symmetric but also positive definite. So all its eigenvalues are strictly
positive; that is, A1/2 is well defined.
PAP' = PAY2\Y/2p’
— (PAl/Z)(Al/ZPI)
— Q1/2 91/2’
Notation: Q~1/2 = (91/2)_1. Then,
Var(QY2u) = 01/2 Var(w)Q-1/?'
— 9—1/299—1/2’
— 9—1/291/291/2’9—1/2’
=]
= QO Y2y ~N(0,1)
= (Q‘l/zu)l(ﬂ‘l/zu) =u'Q u ~ y2(n)

» Remark. The shape of a confidence region (because we’re considering a vector)
PWQlu<sq_ )=«
where q is the appropriate quantile of y2(n) distribution.
* In the spherical case: Q = 621,

u'u
P Sz Sh-a|=a

— shape = sphere centered around 0 with ray 0,/q,_,
= More generally,

g2 0 0
2 - uz
Q= 0 92 e P(ZU—;Sql_a>=a
: . e—d O
0 0 - ol =

— shape = ellipse centered around 0.
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Asymptotic Probability Distribution

% Reminder:
» Suppose z;,, , identically distributed. Then, WLLN says

n

B 1 p
Zn =;Zzi — Ez;=p
=1
» IfVar(z;) < o and z; iid, then
1
Var(z,) = - Var(z;)
Suppose we rescale by a # 1/2,
1
0 ifac< E
n(Zy, —p) -

if a> =
® ifa>3

o,

% Central Limit Theorem (Lindeberg-Levy).
If z;, , is iid with Ez; = p and Var(z;) = Zy y, then

iz, — 1) 5 ¥ (0,%).

d
» Remark. Convergence in distribution. V;, — V if and only if we have something like
PV, e A)— P(V € A)
n—-oo

If dim(}},) = 1, then
x> PV <x)

d
V, =V & Vx where the function is well-defined {Fvn () = Fy(x)

or P(V, <x) » P(V<x)
Recall that
p d
V,—V ? V, — V.
When V is deterministic,
P d
LoV e 1,V
because in this case the joint distributions of 1}, and V are known.
d
{Vn — V  (not deterministic) (Vn) d (v
= (o)

—

d
Z, —a (deterministic) Zn a

But (')
d
V, =V (rv) # (Vn)i)(V)
d < \Z, YA
Z,—a (r.v.)
% Corollary.
d
z, — N(0,%)

d
P } = Az, — N(0,4AX4")
A, — A
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«» Asymptotic distribution of IV estimation.
by =,W'y, I, s.t. WX =1

= by =b° +1,W'y, “y=Xb"+u
And
W'u
Vnll,W'u =nll,, —
TN

1
=ﬁ2?=1 wiu;

» Assume: (w;, y;, x;) jointly iid, and w; are valid instruments

Var(wiu;) = E[(wiuy) (wiwy)']

Zw = E@iw;w;)
»> Theorem.
~ d
Vn(by, — b°) — N (0,TIZ, 1)
» Interpretation. For n large enough, the probability distribution of by, can be
approximated by N (bo, % HZWH').

= (Can assess this approximation by Monte Carlo.

+» Lemma (in Davidson’s Book).
mr}n(HZH’), s.t. [IL = Iy for some given matrix L

where Xy 5 is positive definite, Ly i has rank K. The solution to the above problem is
m =@zt~

» Remark. IT" is the solution of the minimization if and only if
M"L=1
[M"2EM" « M2, VII: TIL =1
»  What does “«” mean? Consider a vector v = a + 5, where a and 8 are uncorrelated.
Var(v) = Var(a) + Var(p)
We say
Var(v) » Var(a) & (Var(v) — Var(a)) is psd
& Vx: x’(Var(v) - Var(a))x >0
= In our case,
Var[vn(by, — b°)] = Q.
Suppose there is another estimator b* such that
Var[vn(b* — b%)] = Q.
Then,
VKO © Va:ad(Q—-0a =0
& Va:a'Qa=Var[vna(by — b°)] = Var[vVna(b* — b°)| = a’'Q"a
i.e. b* is better than by, in terms of variance.

» Proof of the lemma. Suppose I1 = I1* + D. We have
[IL=II"L=1 = DL=0.
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Then,
Ixn' = (I + D)x(I* + D)’
= [I*20* + [1*xD’' + DEN*' + DED’
We want to show that
N’ —I* 2N > 0 < 2D’ + DEM*' + DED’ » 0
Note that
DXD'>» 0 & a'(DXD")a = D'a)'2(D'a) = 0.

It is enough to show that

M*=D’' + DI’ > 0
However, this is not easy, so we would instead show that

M*ED' + DIM*' =0
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Asymptotic Variance of 1V Estimator

+» Recall from last time
» Theorem.
~ d
Vn(by, — b°) — N (0,TIZ, 1)
> Lemma.
mr}n(HZH’), s.t. TIL = I

with X positive definite and rank(L) = K.

» Proof of Lemma.
MN=Mn0"+D = DL=0
MZI" = (I1* + D)Z(IT* + D)’
= [*z0*' + DXO* + MI*ED’ + DD’
To conclude that MXM' — I*XM*" > 0 (because DED’ > 0 and II*Z* > 0), it is
enough to show that
D' + M*ID' =0
But since (DZIT*")’ = [1*XD, it is enough to show that
DEIMI*" =0 or II*XD' =0
Idea: define IT* such that
[1*xD’ = 0.
Note that DL = L'D" = 0. Then, for any matrix A, define
" := AL'>™?
such that IT*XD’ = 0. We also need to make sure IT* as defined is a valid candidate, i.e.
ML=1I, © ALIL=1I
where the matrix L'YL has full rank and thus invertible. Therefore, let
A= (L32L)"L
Therefore, the solution to the minimization problem is
M = (U'sL)~tLs L.
This completes the proof.

o,

¢ The “best” IV estimator (i.e. the one with the smallest asymptotic variance).
I = {E C,w) [E@fw,w)] ™ E Cew) Y E (cw)) [E (ufwwi)] ™!
Thus,
Var(Vnbj,) = [ECxw)ZwE (wix)] ™
with 2, = E(uw;wy).

So the optimal IV estimator (for given W):
by = TLW'y
where I}, = [(X'W)E-1(W'X)| " X' WS-1.

d
Recall that the difference between I1;, and I1* is that nll;, — II*. So to apply LLN,
! ! =1y
X W)f‘l w'x)l X Wf‘l.
n n n

nlly, =
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Feasible Estimate of the IV Estimator

o,

% Recall optimal IV for given W:
M, = [XWSw’'X] " X'WS™t and by, =,W'y

% Recall £ is a consistent estimator of £y, = E (u?w;w;)
> Note: it is enough to provide estimate of aXy,, e.g. aZy,

(1) Conditional homoscedasticity

= ow = f(x)

» Endogeneity: w; # f(x;) because =(x; L u;)

Sy = E[ufww;] = E{E(uf|w;) WiWi’I = o?E[w;w(]
o2
R 2
Take X = % W'W . Then, in the conditional homoscedasticity case
M, =XPyX) ' XWWW)™t = b, =XP,X)"'X'P,y
where P, = W(W'W)~tw’.
= Remark. This formula is very similar to the Frisch-Waugh, and leads to a 2-step

procedure:
(1)  “Projection”: Py X,ie. OLS X¥ onto W
i “OLS™: onto Py, X
y w

» Theorem. 2S-OLS is the optimal IV for given W under conditional homoscedasticity.

» Special case where w; = f(x;), i.e. X are exogenous.
y=Xb+u
Var(y|X) = Var(u|X) = ¢?I, [spherical]
Then, we have
Var(by|X) = (X' PyX)™2X' Py, Var(y|X)Py X (X' Py X) ™t
=o2(X'PyX) 1t
= [f we want to compare OLS and IV variances:
Var(by|X) = 62(X'PyX)~!
Var(bops|X) = o2(X'X)7!
We can conclude that Var(BW|X ) is bigger, because whenever we do an orthogonal
projection, the length of a vector becomes smaller (norm-wise). So
X'Py) (P X)) « (X'X) & X’%X > 0
>0
= X'PyX)"1>» X'X)"L
Therefore, OLS is always as good as IV, and sometimes better.

=  Why do we do IV then?
e When X are endogenous. [Recall: w; # f(x;) in this case]
e When X are exogenous and conditional homoscedastic:
E@?|x) = o(x;)
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So that we capture some information that is left in the o2.
% Theorem. If@; = y; — x| b, where b is a consistent estimator, then
o I ., ,
= E ui WiWi — EW

under the appropriate LLN.

> Proof.
1 1 12
Ez arww = ;Z[ui +x{(b—b)| w;w/
=1 l?ll n n
1 1 ~ 2 ~
= ;Z uww + EZ[X{(b - b)]zwiwi’ + EZ u; x{(b —b) ww!
i=1 i=1 i=1 eR

Need LLN for x;x/w;w/ and x;u;w;w/, and u?w;w.
This is more restrictive because we need moments of order 4.
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Asymptotic Variance (cont’d)

% I = E[u?w;w]] with estimator

> Remark. Eicker-White estimator

where

Coefficient (k, ) of £ is

Note that A is not an estimator of X.
» The feasible estimator is then,

by = (XWStw'x) " X'WS-tw'y
with £ = W'AW.
= [t has the same asymptotic distribution as the infeasible estimator

-1
by = IX’W w'aw)™* W’Xl X'ww'aw) 1w'y
z

where Q = Var(y|X). The variance of by, is
Var(by,|X) = Var(Ay|X)
=AVar(y|X)A'
= AQA'
= [X'WW'QW)~ W' x] 1
where A = [X'WW' QW) 1w'X]1"1x'ww'aw)~w’.

+*»+ The optimal instruments (i.e. the best matrix W).
> Theorem. [X'WW'QW)~'W'X]?! is minimum for W = Q71X
* (71X is the optimal instrument
* by, = (X'Q71X)"1X'Qy. This is the generalized least squares (GLS) estimator
» Var(by|X) = (X'Q71X) !

=  Comments:
e GLS is characterized as the optimal IV estimator when Var(u|X) = Q and
W = f(X)
e GLS is infeasible (because () is unknown)
e The theorem is also true when () is not diagonal.

= Proof. We want to show that, for any W,
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XWWaw) w'x « X'Q71x (%)
Note that the optimal W is given by
w*=Qlx = V2 g 1/2x

X
Write any other W as
W=z
Then,
() o X0 V27’2120 V22X « X'OX
o X'PX«X'X

% Interpretation of GLS:
> IV estimator with W = Q71X
W'(y—Xbj,)=0 & X'Q 1 (y—Xb;,)=0
oblique
projection

y=Xb+u
with Var(u|X) = Q = Q1/201/?'
> O Y2y = 12xp 4+ 02y

v

with Var(v|X) = I.

Now that we have spherical errors, we know that OLS is optimal.
! -1 !
(XIQ—I/Z Q—I/ZX) (XIQ—I/Z Q—I/Zy) — (XIQ—IX)—lle—ly
= This is the GLS formula!
= GLS is simply OLS on standardized errors.

+» Feasible GLS
> (Qcanbe
= diagonal, if iid

2(x1) 0
.Q — O-Z(xZ)
0 2(xn)
and
3}1' x;k u'l
Q—1/2 =Q‘1/2Xb+ﬂ‘1/2u P — =1 ... - |h+
Y a2(x;) o (x) o (x)

Then, GLS is

e [Z 2 o<x1)> ]

sum of weighted squares
of residuals

This is the WLS (weighted least squares).
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= serial correlation, GLS is usually useless.

O Y2y = Q71/2 (yt> = Q™ Y2Xb + Q7Y ?y

If Q is not diagonal, then § = Q~/2y contains mixture of different observations of y,.
This does not make sense.

» Feasible GLS or optimal WLS:
b=XQ1x)"x'0ly
Here the Eicker-White does not help because we need an estimator of Q.
We need some assumptions about the covariance structure of u, e.g.
02(x;) = E[u?|x] = zja
where z; = f(x;).
=  Summary:
(1) OLS of y; onx; — b and @;
(2) OLS of 1% on z; — @& and a2(x;)

7,12 A
(3) ming, 3714 [%] — b which is asymptotically equivalent to b s.
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Asymptotic Tests

o,

s Wald tests of hypothesis about b:
Va(by - b°) > & (0,AVar(by))
Hy:g(®°) =0, p<K

(1)
Here g(+) is (either linear or non-linear) restrictions on the K elements in by, .

» Example 1. Production function
ani = b1 + b2 ani + b3 lnLi +ui
Testing constant returns to scale: Hy : b, + b3 —1 = 0.

» General linear hypothesis:
Hy:Rb—1r =0
where R is (p, K), r is (p, 1), and rank(R) = p. So we are testing p linear restrictions on
K parameters. The full column rank assumption means that we’re not testing the same
restriction twice.
* In Example 1, we have

b,
R=(0 1 1), r=1, b=<b2>
bs

So we’re testing one (p = 1) restriction on three parameters.

» Example 2. Non-linear restrictions.
Ve =a + Hoxt + Hlxt_l + szt_z + -4 U
= Introduce the lag-operator L:

?
yr=a+ Z(Gth)xt + u,
h=0
where L"x, = x,_;,. Treating the sum as a polynomial, we have
co+c1L
(6 + 6L+ ) “1ral
This means we have a finite number (i.e. 3 in this case) of the restrictions. This allows
us to accommodate an infinite number of parameters:
6y = co, [order 0]
Ooa, + 0, =y, [order 1]
6,a, +6, =0, [order 2]
0,a, + 65 =0, [order 3]

= (90 + 01[4 + )(1 + alL) = Cy + ClL

= 3 free parameters 6, 64, 0,
= All the other ones are functions of them:

93 = —92611 = ——

which is nonlinear.
= Formulate the hypothesis as
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02 5
H0:93=6_ Lt H0:9193_92 =0
! 9(6)=0
Use Taylor expansion:
dg(6°)
9(8) ~ g(6%) + === (6~ 6°)
where 89 is a vector of the true values.
» General case:
g: RXK - RP
b~ g(b)
Then,
09p,1) _|.. 94
(’)bELK) dby,
(®.K) :
Recall that
(2) -%
ab') ~ b
We require that

ag(b°
ank( ga(b’ )> =p
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Asymptotic Testing

% We have some estimator by, of the true parameter b°, and
Va(by = b°) = & (0,Avar(by))
> Hgy: g(b%) =0, where g(+) is a vector of size p
* If g is linear, g(b°) = Rb° with rank(R) = p

0
= [If g is nonlinear, we require rank (—6“2(:, )) =p

< What is the pdf of g(by)?
» Delta method.
Suppose that vn(by, — b°) STV (O,AVar(EW)), and that g € C1. Then,
~ d ag(b°) ~ 109’ (b?)
Vi (g(bw) — g(6®) > ¥ (0, == avar(by) —-

= Proof. For simplicity, assume that we’re in dimension one, i.e. p = 1. We use instead
of the Taylor expansion, the mean value theorem.

R ag(b) , -
9(6w) = g0 + 228 G, — o)

where b is between b° and by,. Rescaling by vn, we get

Vi (95w) — 900) = 228 5, — bo)

ab’
p p Y
From b is between by, and b° and by, — b® = b — b°. By assumption, dg/db’
is continuous, we have

dg(b) » 9g(b)

ab’ ab’
Recall that
d
0N REVORIH
Y, —a n a

This completes the proof.

% Under H, : g(b°) =0,
Vn g(BW) LR N (O,AVar (g(EW)))
~ ~ -1 ~ d
= wy = [Vng'(bw)] [AVar (9 (bW))] [V g(bw)] — x*(@)
» Critical region (i.e. region where H, is REJECTED) of the test:

Cp = {Wn > Xlz—a(p)}
the quantile of y?(p) distribution with level (1 — a).

o,

¢ Two properties of asymptotic tests:
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» Property 1 (under Hy). If H, is true, Pr(C,) 2 [test result is true at the asymptotic
level, cf. the Monte Carlo exercise of hw2].
> Property 2 (under H,). If H, is not true, Pr(C,,) —2 1, [consistent test].
* Proof.
78N N -1 N
w,=ng (bW) [AVar (g(bw))] g(bw) —> + ©

n—-oo

P P
—g'(b°) —a p.d. matrix

—number>0
From w,, — oo we conclude that Pr(C,) = 1.
n—-oo
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Asymptotic Tests (cont’d)

% Hy:g(b)=0,gis(px1),bis(Kx1),p<K
> by, is the unconstraint estimate — by, does not use the information contained in H,
> g(BW) close to 0?
~ ~ -1
w, =n g’(bW) [AVar (g(bw))] g(bW)

d
Under Hy, w, — x*(p)

» Cy, is the critical region,
n Cr = {Wn > Xlz—a(p)}
» P(C,) — a when H, is true [correct asymptotic size]

= P(C,) 2~ 1 when H, is not true [consistency]

% So far, we’ve been focusing on
Hy:g(b)=0 vs H,:g(b)+0
What if we want to test something more challenging?
» Idea: Consider H, that depends on n and gets closer to H, as n increases

)
H, :g(b) =—, 0 ERP\ {0
a*9g() N \ {0}
This is a sequence of local alternatives.
> Note that g(b) is not fixed, but vVng(b) is fixed (assuming g(b) converges at rate v/n)

Vi (9(by) — 9®) 5w (0,4var (9(54)))
()
Vg (Bw) ~ Vrg®) 5 v (0, avar (g(54)))
Under the sequence of local alternatives: vVng(b) = 8,

Vn (g(BW)) 4 N (6,AVar (g(BW)))
= vafavar (g(5))] " 9(bw) 5 3 (avar (9(5)) " 5.1)

= ng'(by)AVar (g(BW))_l 9(by) N x? (p, 8'AVar (g(BW))_l 6)

Wn

= Recall that if

Zipx) ~ N = z'z~ x*(p,u'w)
Non-central y? with p degrees of freedom and non-centrality parameter ' .

¢+ Property 3. Under the sequence of local alternatives,

6
g(b)=\/—ﬁ, § € RV \ {0}

we have

Wy, R P <p, 5'AVar (g(BW))_l 6).
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» Asymptotic power of the test under the sequence of local alternatives
n ~ -1
P(C,) — P (XZ <p,6IAVar (g(bw)) 6)) > yi ,(p)>a

-1
= The larger the non-centrality parameter, §'AVar ( g (bw)) 8, the more powerful the

test is. The parameter is large in two cases:
e § is large — but this is not very useful, as we want § to be close to zero

o AVar (g(BW)) is small:

AVar ( g (bw))
make small

We want to pick the efficient estimator which is associated with the “smallest”
asymptotic variance.

g( ) ag' (b)

———AVa (bW)

<+ Wald confidence sets:
Valg(Bw) - g®)] > w (0, 4var (g(Bw)))
= nlg(bw) — 9] War (9(Bw)) l9(bw) — 9] > @)

» Confidence set about g(b) with level (1 — a) asymptotically:

b= {h e R n(g(By) — 1) AVar (9(Bu)) (9(bw) — ) < xE-a®)]
P(g(b) € I")n_>_>oo 1-a

+ Finding feasible asymptotic variance

avar (g(61) = g,SPAV )

= m(g(i’w)) = (b ) A(bw) (bW)

ag’ (b)

ab’
where
AVar(by) = [E(;W)HEEWx{)] ™t
with
T = E@?w;w/)
Therefore,

= Avar(b )—[(1X'W)2-1(1 W’X)]_l
aow) = |\ n
fi When X = W [OLS]

~ 1
Y =E(uixx]) = £= EX'AX
which is the HCC estimator with
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9y
RN
o

=)

Il
—
o

>
[\S]
~__ —

or in the homoscedastic case

~ O
Y=—X'X
n

% Restricted least squares under a linear hypothesis
Hy : Ripxiyh = T(pxa)s rank(R) =p
Under homoscedasticity,
_(Rb—7)[RX'X)™R'T"*(Rb — )
= e

~ . A2 _ 1 "
Here b is the OLS estimator, and 6% = ~Xi=1 az.

n

» Consider the constraint optimization problem:

n
> Gi—xby?
i=1

Let A1) be a vector of Lagrange multipliers.
L=(y—Xb)(y—Xb)+A(Rb—r1)
0L ~
5 = —2X'(y —=Xb.)+R'2=0
(IxD)
~ ~ 1
= 2X'(y—Xb))=R'A & b.=b- E(X'X)-lR'/l

So b, # b as long as A # 0, i.e. anytime the constraints are binding.

~ ~ 1 ~

Rb, = Rb — ER(X’X)‘lR’/’l = A=2[RX'X)"*R'1"*(Rb —71)

r invertible

= (y —Xb)'(y — Xb), s.t. Rb=r

min
b

Finally,
b. =b—(X'X)7'R[RX'X)"*R']"*(Rb — )
Difference between the adjusted values:
Xb—Xb, = X(X'X)"*R'[R(X'X)"*R']"*(Rb — 1)
= |xb - xb,||" = (xb — xb.)'(xb — Xb,)
= (Rb—7) [RX'X)"*R1"Y(Rb — 1)
This is the numerator of the Wald test statistic w,,, i.e.
- ~ 12
— ”Xb — Xb, ”

n A~
0-2

» Geometric interpretation
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L(X)

» Pythagorean theorem:
N . ~ ~ 12
lacll? = llall® + ||[Xb — Xb||
= [1all* + 12 — ﬁczllz
_||xb — Xb.||
=
a1 = llall?
42
()
=[la|1?/n
SSRy — SSR
SSR

= W,

=n
» The Gaussian case (small sample).
Assume u ~ N'(0,021,), oru/o ~ N(0,1,,). Then,
y|X ~N(Xb,0%,) = b=XX)"X'y|Xx ~N
and b.|X ~ IV (as a linear transformation of b)
il = Myy = Myu

~ 2
i
—| ~¥2(n—-K
[ REAG
i
—| ~ (- -p)
From the Pythagorean theorem:
la? _ lal® | lla —all?
o2 T g2 o2
! ! !
x2(n-(K-p))  x*(n-K) x2(p)
1 n—K [SSR,—SSR]/p
> —wy, - = ~F(p,n—K
n'n p SSR/(n — K) (p.n=K)

under the null. Note that
[SSRo — SSR]  x*(p)
p p
SSR  x*(n—K)
n—K n—K
If Hy is not true, ||f1.]|? does not mean 0 anymore, because we imposed the incorrect
restriction Rb = r.
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o Fisher test of Hy:

_ ((SSRy — SSR)/p
Tf_{ SSR/(n—K) >F1—a(p;n_K)}

and P(C!) = a under H,
¢ This is exact!! Because I have the exact finite sample distribution of test
statistic.
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Asymptotic Test (cont’d)

o,

< Recall from last time the Fisher test of Hy : Rbkx1) = T(px1)
SSRy — SSR
F_ {( 0 )/p >Fy_ (pn — K)}

" | SSR/(n—K)
P(CF) = a under H,,.

» Asymptotically,
np
ckF = {Wn >

=  We’re interested in knowing whether
np ?
— Fian—K) = xi_o(p)
If this is the case, then Wald testing and Fisher testing are equivalent asymptotically.

) Fl—a(p;n - K)}

» Proof of the above convergence.
np x*®)/p x* ()

np
——F(p,n—-K)= - =
n—K (p,n ) n—K y?’(n—K)/(n—K) n1y?(n—K)
Note that the denominator converges to 1:

n—-K
1 n—K 1
;xz(n—K)= — n—KZZiZ , 2z ~N(0,1)
Ny’ t=0

n—-oo

2B (22)=var(z?)=1

— 1

% Connection with R?

> R? only makes sense when there is a constant in the regression model:
y=ae, +Xb+u
HO : b = 0

L(ey, X) L(e,)
Using the Pythagorean theorem:
1
~ 112 ~112 A~ — 2
—lu = —lu +—|[y —ye
| —[[al? + 119 = el
1 1 1 =12
HZ?:()(:VL'_J_’)Z HZ?:lﬁz Hz?zl(yi_j})
total variance with =0 explained variance

residual variance
= Total variance = Residual variance + Explained variance
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By definition,

2 _ Explained variance _ ||§ — Jey,||?

Total variance  ||{l,l|?
Recall,

n"'SSRy —n"'SSR _ nR?

Wn =1 n-1SSR 1—-R?

Critical region (asymptotically):
nR? " . 5 X
Cn = {m > Xl—a(K)} or Cn = {TlR > Xl—a(K)}
Sufficient to show that
1 _lwl? e
1—-R2 " ||la|?

This is true under H,,.
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Testing Conditional Homoscedasticity

% OLS: b = (X'X)"'X'y with
Var(b|X) = (X'X)"*X'Var(y|X)X(X'X)~*

1 -
—AVar(b) = [E(xx)] ™ E (rix{uf) [E (xix)] ™
can be consistently estimated by HCC

n “1rn n -1
HCC = [Z xl-x{] [Z xl-x{ﬁl?] [Z xl-x{]
i=1 i=1 i=1
> Testof Hy : Var(u;|x;) = o2 for any i, i.e. Hy : conditional homoscedasticity

» Idea is to compare
n

n
1 1~A2 A2 1 !
— ) x;x;U7 and 6°— ) x;x;
n n

i=1 i=1

% White (1980)
n

1 P
Ez xixj (A2 — 6%) > 07

i=1
Here x;x; is a (K, K) matrix with K(K + 1) /2 different terms
» Define 1; that contains all the different terms of x;x;.

n
1 R o P
e =) i@ - 6%) 5 07
i=1
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Testing for Conditional Homoscedasticity

+» Recall from last time:
n
1 P
B R
i=1

where 1; is a vector of different terms in x;x; .

d
Vnc, — N(0,B)
Define
" d
$n = ncr,lB_lcn - Xz(m)
where m is the number of non-constant terms in ;.

% In practice, we perform an auxiliary regression:
W =a+yP)y+e
» The assumption we’re interested in is
Hy:y=0
That is, if there is homoscedasticity, then the regressors should not be able to explain
much of the residuals.
* Constrained estimator: &, = 6
* Unconstrained OLS estimators: @ + ;7 and the associated test statistic &, = nR?
* Reject homoscedasticity if and only if nR? > y#_,(m)
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Dynamic Regression Model

% General framework
» Need for ergodic stationarity
» Dynamic regression model:
Ve = x¢b + ug, Eu, =0
= X, is still called the explanatory variable, but there are two kinds
e Laggedvalues of y;: Yi_1,Ye—2) s Ve—p
e Other variables: NesNe—1s - » Ne—q> Where n is K X 1

So the regress model is
p

q
Ve = Z ajye—j + Z Ne—iVi + Up
i=0

j=1

x(b
So here,
b° = [Var(x)] ' Cov(x;, y;)
where Cov(x;, y;) contain things like

Cov(Ne—p) M), COU()’t—i' Yt—j)'

¢ Definition. A stochastic process (z;) is (strictly) stationary if for all r and all ¢, the joint
probability distribution of (Zt, Ztyhys Zevhys Zt_,_hr) depends on hy, h,, ..., h,- but not on t.

+«» Definition. A process is weakly stationary (or covariance stationary) when E(z;) and
Cov(z;, Z4p) do not depend on h.
» Note.

» (z,)isiid = (z.) is a stationary process
= (z.) is stationary = (z;) is identically distributed with some serial dependence

» Stationarity is not sufficient to get LLN
= Example. (x;) iid, and z is independent of x;
Ve =X+ 2z
Here (y,;) is stationary:
Cov(ye, Yern) = Cov(xe + 2, x¢4 + 2) = Var(z)
This implies that (xt + 7, Xeon, T Z Xeqn, *Z s Xegp, + Z) has the same
probability distribution as any (xg + 2, X¢4n, ¥ Z, Xeyn, * Z, o, Xegn, + Z).

T

1 ?

7D ve— EG) = E(x) +E@)
t=1

T T
1 1 P
= Tz(xt +2) = Tth +2 5 E() +2# E(yy)
t=1 t=1

Unless z = E(z), i.e. z is a constant. But this is not true in general.
= To avoid this situation, we would need to assume ergodicity.

» Ergodicity (informal definition): A random event involving every member of the
sequence has either probability 0 or 1.
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» Example (cont’d with the previous). If P(z < a) is either 0 or 1, then z is a constant
(i.e. z is deterministic). So the counter-example does not work any more.

% Ergodic Theorem. If (z;) is stationary, ergodic, and integrable, then
T

1 p i
7; 7 — E(z).
» Hayashi (page 101): “A stationary process is ergodic if it is asymptotically independent”
7111_1;1;10 Cov (f(Zt+h1' Zt+h2' LEER) Zt+hr)l g(zt+n+h1' Zt+n+h2' LEER) Zt+n+hr)) = 01 Vf' g

% Theorem. Let (z;,) be stationary, ergodic with finite variance process.

Z Cov(zl,zt) 50

» The converse (non-correlation = asymptotlc independence) is true only for the Gaussian
processes.

> Note 1. If we know that

T—oo

T
t—oo 1
Cov(zy,z;) —0 = Tz Cov(zy,2z;) — 0

But the converse is not true, since

T T
1 1
TZ Cov(zy,z;) = Cov (Zl’fz Zt>

t=1

» Note 2. With y; = x; + z, Cov(y;,y:) = Var(z)
T

1 ?
Tz Cov(yy,y:) — 0
t=1

¢ Need for Martingale Difference Sequence (MDS)
» Example. OLS: y, = x{b + u, with
b=XX)"X'y =b°+ (X'X)"X'u

-1
X'X X'u
=> VT(b-b")= |—| - —
-7 - 7
—E(xix;) %Zz::lxtut
CLT
Think about (F,) filtration, i.e. an increasing sequence of o-fields
Fe € Fra

= Interpretation: F; contains everything we know at time t, i.e. z; where T < t. In the
dynamic regression model, y; = x(b + u;,
Fioi=00nTt<t;x5,5<t)
predetermined variables
This is the smallest o-field containing all the predetermined variables.
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E[utth—l] = 0.

X/

¥ Definition. (z,) is F,-adapted if z; € F;.
» We say that (z;, F;) is an adapted sequence.

X/
L X4

Definition. M, is a martingale with respect to F, if M, is F,-adapted, integrable, and
E(M¢|Fe-1) = M¢—y.

+« Definition. ¢, is a martingale difference sequence (MDS) if €, is F;-adapted, integrable, and
E(e:|Fi—1) = 0.
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Time Series (cont’d)

< A word on m.d.s.:
» M, is martingale with respect to F; — E(M|Fi_1) = M;_4
" =M — M4
» E(e|Fo1) = EMM¢|Fiq) — E(My_1|Fyy) =My y — M, =0

% Theorem. If (¢;, F;) is m.d.s. and (x;, F;) is adapted, then
(i) Cov(es, x¢—1) =0
(i1) (€:xt—1) is a m.d.s. with respect to F,

» Proof. Statement (i):
Cov(ey, xt—1) = E(€x¢—1) — E%Ext—1
=0
= E[E(€¢x¢_1|Ft-1)]
= Ex;_1E(€|F¢-1)]
=0
Statement (ii) can be proved similarly.

% In cross-section, we assume that €; is serially independent
= €€, are independent
< COU(f(é‘t), g(et—l)) = 0' vf!g
> €, is mds (with respect to “natural filtration” F; = {€; : t = 1})
= E(€|F:—1) =0 and Cov(e, g(€;)) =0, Vg, Vi<t
» €, is serially uncorrelated if and only if
Cov(er €,) =0, Vi<t
» Serial independence is stronger than mds (serial uncorrelation with any function of the
past), which is in turn stronger than serial uncorrelation (with the past)
= mds gives use CLT with serial dependence
= serial uncorrelation gives WLLN

% Theorem (WLLN). If (¢;) is a stationary mds, then
T

1 p
TZ Et — 0
t=1

» Note:
» (€)ismds # f(e;)is mds
= (€.) is stationary and ergodic = Vf, f(€,) is stationary and ergodic

p
< Theorem (CLT). If (¢;) is squared integrable, stationary mds such that % T_1€t — o2,

then

T
1 Z d
— > ¢, > N(0,0%)
\/Tt=1 t
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General Method of Moments (GMM)

% GMM Orthogonality Condition (cf. Hansen (1982) Econometrica)
» General idea: Estimation is based on
= Observation of a sequence (z;) which is stationary and ergodic
= Structural knowledge about f (z;, 8) (where f is known but 6 is unknown) such that
the true unknown value of 8, say 9, is characterized by f(z;, 8°) a mds with respect
to (F¢)

» Two different cases
(1) z; isiid, i.e. E[f (2, 8°)] = 0 — unconditional moment restriction (UMR)
() f(z:,0) = w; - u,(6), where
e 1w, is the error term with E[u,(8°|F,_,)] = 0. Here F,_; is the predetermined
information. — conditional moment restriction (CMR)
e w; € F;_,. Note that
E[u,(6°|F,-)] =0
we € Fr_q
But this is not the only way to come up with a UMR, e.g. use g(w;) where g is
any function will also work.

e 7, : all the variables entering into u,(6) and w;
= E(f(2,09|F_1) =0

}—)UMR
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GMM (cont’d)

R/
A X4

*

X/
°e

GMM orthogonality conditions
» Unconditional Moment Restriction: E[f(z;,0°)] = 0, where f is known and z; is iid
> Conditional Moment Restriction: E[u,(8°)|F,_;] =0

* Pick w;_; € F;_;. Then we have the UMR:

E [Wt_lut(eo)] == O
~————————
f(Ztﬁeo)

* In general, any function g(w,) will work. So from one CMR we can potentially

derive an infinite number of UMR’s.

Example 1. Dynamic Regression Model.
Ve = x¢tb + uy, u(0) =y — xib
Xx; where there is no simultaneity issues
Wi_q — { simultaneity issues
conditional heteroscedasticity
Predetermined variables (i.e. variables that belong to F;_;)
> vy, T<t
> ng T < tif exogenous

n: where {

Example 2. Euler equations

max Z BME(U(Ceyn, 0)IF,)

Ct+n0
h=1

» Constraints:

Wish = Wisno1 — Ceyn—1)Resn
where R}, is the returns received between period (t + h — 1) and (t + h).
» Differentiate wrt Cy,p, to get FOC:

=U’ (Ct+h 1) + ﬂE[U (Ct+h)Rt+h|Tt+h—1] =0

U’ (Ct+h) | l
“Reyn — UFiin-1| =0

More examples in Hayashi, Chapter 3.1, 3.2, on simultaneity issues and relevant instruments

Identification.

E[f(z,0%] =0
> Casel. f(z,0) = w(y; — x(0).

E(wye) = E<Wt xt> QJ
Hx11xp/ pX1
Here, H = p. We need w;x{ to have full column rank, i.e. rank p. Hence, we ensure that

E(f(z,0%)=0 & 0=0°

» Case 2. Non-linear regression model
Ve = h(x, 0) + u,
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f(z,0) = Wt(Yt — h(x, 9))
Locally, we can re-interpret the non-linear regression model as a linear one.

=  Rank condition:
k E ah(xtl 60) _
ran Wy FY T =p

> Case 3. General Case: E(f(2,0°) =0
= Identification assumptions:
(1) Rank condition:

06’
where f is a functional vector of size H > p.
(2) E(f(2,09)=0 < 6=0°

rank (E lMD =p

» Note. Order condition (necessary but not sufficient condition for identification)
» p is the number of parameters and H is the number of moment conditions
e p=H — just-identified case
e p < H — over-identified case
e p > H — under-identified case
= From the identification point of view, more condition is better to hope that the rank
condition is satisfied.

¢ Assumption. Var ( f(z, 90)) is non-singular.
> Example. f(z.,0°) = w,u,(8°)
Var(f(z,6%) = E[f (2, 6°)f (2, 6°)]

= Elw,wiu (6°)]

= E [wewi Euf (6°)|F,_,)
ot 1(69
= E[w,wioi,(6°)]
To check that it is non-singular, we compute
a'Var(f(z,69)a = E[(@'w)?0%,(6%)] = 0
= (a'wp)?c2,(0% =0, a.s.

»  Assumption. P(c2.,(6°) = 0) = 0 and E[w,w/] non-singular (or no redundant IV in
W)
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Consistent GMM Estimation

% Definition. E[f(z;,0)] = 0 where fisHX 1andfisp X 1
» Case 1. Just-identified (H = p).

T

~ 1

0 is the solution of {72 f(z:,0) = 0}
t=1

= p equations for p unknowns
= Can “hope” to find such @

» Case 2. Over-identified (H > p). We solve an approximation problem.
mgin{fT(e)IWTfT(e)}

where

= fr(®) =% f(2,0)

= Wy isaH X H positive definite matrix which is called weighting matrix.
o We get O7(W;) for each matrix Wi, i.e. a different GMM estimate. For notational

simplicity, we drop the argument and write only 8y

= In the over-identified case, there is more “freedom” in the choice of Wy. In contrast,

in the just-identified case, whatever Wy you pick, the solution of 8 is going to be the

same.
FOC
dfr(6r .
T( Wr f; T(QT) =
00
h—’pr HxXH Hx1
Redefine
af1 (8
fg(g r) Wy = Ay, [selection matrix]
Then,

ATf_ T (éT) =0
= We started with H moment conditions and we selected p linear combinations of them.
= The p rows of A are in the space spanned by the p vectors afT(éT)/(?H-,j =1,..,p.

< Consistency. Qr(8) == f£(0)Wrfr(6) . .
Or = arg min{fT'(G)WTfT(H)}
» Intuition:
= 7z, is ergodic stationary
* From ergodic theorem:

T
~ 1 p
Fr(0) =7 ) f(2,6) = EIf (2, 0)]
t=1
P
= Assumption on Wy: Wy — W, where W is positive definite.

» Criterion function
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14
Qr(8) —  Qw(®)  =Elf(z,OI'WE[f(z:,6)]
sample criterion asymptotic criterion
Question:
4
Qr(6) —  Qu(8)
! min ! min
~ p
6, ?1—>? 0°

» Theorem. Suppose
* 0 € 0 where 0 is a compact subset of R?
»  Q;(+) is continuous with respect to 6

= Qr(0) LN Q4 (0) uniformly with respect to 6

» 69 is unique solution of mingeg{Qs (8)]

then, we have
A~ _ P o
Or = argminQr(6) — 6

= This is the general result for consistency of extremum estimators

» Special case of GMM.
= Assumption: stationarity, ergodicity, W positive definite as previously stated
= Qr(0) = fr(O)Wrfr(6) satisfies
e Continuity: f(z;, 8) with respect to 6
e Uniform convergence: LLN applied to f(z, 8), uniform WLLN for f;(6)
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Consistency of Extremum Estimators (cont’d)

% An extremum estimator is
6 = argmin[Qr (6)]
» A special case is the minimum distance estimator

Qr(0) = fr(O)Wrfr(6)
where E[f(z;,60)] = 0, and

T

_ 1

Fr(0) =2 f(,0)
t=1

The GMM is
Qw0 () = E[f (2, O)I'WE[f (2, 6)]

> Another case is the M-estimator

T
1
0r = 7; mz,0),  Qu(®) = Elm(z,0)]

Examples are: OLS, NLS, WLS, WNLS, MLE
Ve = hT(xt' 0) + u,

1
Qr(®) =7 ) (ve = h(xe )
t=1

% Consistency of GMM-estimator (as a special case of extremum estimator)
» Regularity: stationarity, ergodicity, positive definiteness of W
> 0 €0 c RP, where O is compact
» Continuity of f(z,)
> Uniform convergence for f(8). In this case, we require the uniform LLN for f7(8)
= Sufficient condition for uniform convergence of f(-):

E |suplf(z. Ol < o

% Asymptotic normality.
» We need to apply the mean value theorem to the FOC
90r(6) _
a0
Do a mean-value expansion.
= Recall the MVT: Let h : R? - R? continuously differentiable. Then there exists
6 € [0 — 6°] such that

~ oh(8) , ~
h(8r) = h(6°) + aé') (67 —6°).

Note that 6 could be different for each component h(+), which is a vector.

» The GMM case: B B
Qr(0) = fr(O)Wrfr(6)
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The FOC is
00:(0;) 0fi(6r) . -
- 26— 2 a9 Wrfr(0r)=0
Focus on fT(HT):
ofr(9)
fr(8) + == (6r — 6°)
The FOC becomes
of1(6r) , 0fr(6) g0y — _ 0fr(0r) - o
p_, —N(0,Q)
2rwr —T
Convergence:
ofr(8r) » _ (0f' (2,6 P ofr(8) »
—ag E\Tae ) WrmW S d

F,
We know that I'"WT is invertible, because I' is full column rank and W is positive
definite. Then,

VT(87 — 6°) = —(T'WD) T T'WVTf7(8°) + 0,(1)
By CLT, we have

VT (67— 6°) 5 W (0, (F'WF)-lr'anr(r'Wr)—1>
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Consistent GMM Estimator

% Theorem (Asymptotic distribution of GMM estimator). Under
= Consistency of GMM estimator
*  f(z,0) is continuously differentiable with respect to 6
= Rank assumption with respect to I':

rank <E l%g,go)l) =

r

= f(z,6) MDS
= CLT for MDS
We have

VT (67 — 6°) 5 W (0, V)
where
V=0wDir'waw'rr'wr)-1!

» Mean-value expansion of the FOC of

Qr(8) = fr(OW fr(6)

6 A
M wi(6,) = o

Note that for 87 in between 0° and 8 (may be different from different elements of f7),

fr(6r) = fr(6°) + 91 (61) (6, —6°)

FOC:

a0’
af-(6 afr(6 R
= fTa(eT)WT f(Ta(g,T) VT(8r - 6°) = - fT( T)er VT (0%
iN(on)
By assumption,
o, 200 o Or L, g0
af;(eT) °,
a0’
af;(eT) ®,
00’
Then,
ofr(6r)  ofr(6r) L I
o6 " kG twr
afi(6
of+(0 afr(6 ~
fg(‘9 T) w, fg(ng) VT(6y — 69) % N(O, F’WQW'F)
= VI8, - 60°) 5 N(0,V)
where

V='wDirwaw'rr'wr)-L

Page 61 of 66



Econ 837 Econometrics April 4, 2011

«» Efficient GMM estimation

» How to pick the efficient weighting matrix W — want to minimize the asymptotic
variance of the GMM estimator 8
= The only flexibility we have is in choosing W. Since W is symmetric, the idea is to
pick W = Q71 so that two of the “blocks” in V cancels out with each other:
w=01 = v=CaoinDtirataoiraatn?
I
r’'o-ir

1
= Vopt = (F'Q_lf)_l
So we have the efficient GMM estimator with
AVar(6;) = (I'a n)t

> Example. f(z;,0) = w; (y; — x(60)
ue(6)
Q = E[wwiug(6°)]
= Elwewiof (69, 07(0°) = Var(u.(6")

Conditional homoscedasticity (given w;)
» g2(0°) = o2
= () proportional to E(w;w;)
=  Weighting matrix

The minimization problem is

T ! T
1 1
min [72 W (v, — x;e)] W'w)~ [72 W (v, — x;@]
& min[W'(y - X0))' W'W) W' (y - X6)]

=3 mgin (y=X0) WW'W)"w' (y — X0)
=Py =Py, Py

< min[[Py (y — XO)]' [Py (y — X6)]]

© min|lPy (y - XO)II”

This means that the efficient GMM estimator corresponds to OLS of P,y on Py, X, or the
2SLS estimator of y on Py, X.

o,

¢ The general case

> Efficient weighting matrix Wy LR Q71, where Q = Var(f(z,,6°)).
» How do we estimate it?

= 2-step GMM

= [terated GMM

= Continuously updated GMM
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o 2-step GMM
» Step 1: get a consistent GMM estimator with an arbitrary weighting matrix W:
mein[fT’ (OWrfr(0)] — 87 consistent
Usually, we pick W = 1.
> Step 2: use O to get a consistent estimator of (0

T
~ 1 ~ ~
0 (0r) = 2 ) f(20.00)f (20, Br)
t=1
Use QT(éT) as the weighting matrix and
min [fT’(H)[QT(éT)]_lfT(H)] — @, efficient estimator
Note that Q. (éT) does not depend on 6.

% Motivation for other practical GMM estimation methods:

> In practice, O or 2S-GMM does not have good finite sample properties. So here are
some improvements:

* Demean f (zt, éT), as in practice it’s not always equal to zero
T

+(6) = 7 [ (2 Br) — (61 (20, Br) — (6]

t=1

= [terated GMM: idea is to keep running GMM until you find éT_k close enough to
Or jes1-
e Step k: QT(éT_k) or Q’;(éT_k)
mein[fT’(H)Q}l(éT'k)fT(e)] — Orgs1
Continue this process until GAT,kH is close enough to GAT,k (e.g. fr(ér,k) is close to
Zero)

* CU-GMM: integrate all the steps into one single minimization problem
min(f7.(6)07* (6)fr ()]
Note that we’re now not minimizing a quadratic form, so this estimator is of a
different class of estimators.
¢ Finite sample properties of this estimator are very good.
e Consistent and asymptotically efficient.

e However, in practice, there are some “local” optima where your optimization
might get stuck — need a lot of robustness checks.

+» Weighted least squares
Y = h(x, 0) + uy, E(uelx:) =0
» Weighted non-linear least squares:

T
min [Z at(yt — h(x;, 9))2]

t=1
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FOC:

T ~
oh(x,., 0 ~
5 e ), 1c,) -

t=1
we (px1)
T

N2
= Z w, (yt — h(x,, 9))
=1
Just-identification! ‘

= We can always reinterpret WNLS as GMM with instruments
oh(x;,0)

Wt:at 66

» More generally, any M-estimator can be reinterpreted as GMM when looking at the FOC
» In practice, in the linear case, the optimal weights are inverse of the variance (which is

unknown). Since it is unknown, it has to be estimated in the first step.

=  Efficient WLS:

. (Yt — h(xt, 9))2
i Z Var (u,|x,)

where Var(u,|x,) is the result of a first step.

Page 64 of 66



Econ 837 Econometrics April 6, 2011

GMM v.s. Maximum Likelihood (ML)

% Framework for ML
» We have n iid observations: y;, ..., ¥
» Parametric model
Y, ~ €(y;,60), 6 €O cRP
Tapdf
For example, 8 = (u  02)’
» (Joint) Density function for (yy, ..., 1)

n
taG 90 0) = | [ €00,0)
i=1

» Likelihood: 8 — €,(yq, ..., ¥n; 0)
> MLE &:

n n

= arg ?Sé(nf(yi, @) = arg r&egiz In ({’(yl-,@))

i=1 i=1

D)

FOC:

n

n
OIn(£(y:.9)) _ 0 o lz OIn(£(y:.9)) _ 0
= 20 n& L)
L= 1=
Note that the latter is the mean of some moment conditions
. [a ln(f(yl-,e"))l _ 0

00

» What about other orthogonality conditions or other moment conditions?
= Consider f(y;,0) such that E(f (y;,0°)) = 0. Perform an affine regression of % on

f (since both terms have mean zero, there’s no need for a constant term):

d1In(¢(Y,0%)

= = BF(Y,0° +u
with
0
B = Cov Iwﬂ“ 90)] [Var(f(v,69)]
By definition,
E[f(Y,00] =0 o ff(y,e())e(y,eomy ~0
f (¥,0° 1 8e(Y,0°
> f%{’(Y,HO)dY+jf(Y,0°)€(Y 75 (ae ) (v, 6%)ay
E 3fg‘;'f’°)]=r 6ln({;(;/,90))
Cov[f(Y,QO),a lane({’)]

_ 9 In(£(Y,6%) _

- —I'[Var(f(Y,0%)]f(Y,0° +u

The explained variance is equal to
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M'var(f(v,00)] Var(f(¥,09)[Var(f(¥,0%)] T = I'[Var(f(¥,6%)] T

This is the inverse of the variance of efficient GMM with moment condition f.

r—z«:(af)— c ( aln{))— g-1=¢ Rao lower bound
— ae = ov f, 69 = = Lramer-nao lower noun

“Best GMM?” is the one where we choose f to maximize the explained variance, i.e.

choose f(Y,0) = %ém). Therefore, GMM is MLE. More specifically, in this case,
Var(f) = v (6 In #) _
ar(f) =Var 50 )=

where 7 is the Fisher information matrix.

» Conclusion:
Provided the parametric form of the density of the data (y,, ..., V,) is known (here we
focused on iid).

= Result: GMM with optimal orthogonality conditions % is numerically equivalent to
ML.
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