
Econ 837 Econometrics  Jan 10, 2011 

 Page 1 of 66 

Introduction  
 

 Grades: 
 Midterm  30% 
 Assignments 20% (about 3 or 4, may use Matlab) 
 Final   50% 

 
 Econometrics is interested in drawing inferences about parameters. We have: 

 A sample of observations , , … ,  with joint distribution  
 A model (based on econ theory) 

 Parametric: | , the likelihood function of  given a parameter   →  this is the 
focus of this course 
• Classic  
• Bayesian 

 Non parametric: not a fixed , but a potentially infinite dimension of parameters 
 Semi-parametric: in-between parametric and non-parametric  

 Goal: to draw inference on  given . 
 

 Parametric Methods 
1. Classic inference 

  has a true value , which is unknown 
• Assuming that  exists means that |  

 Need to find  
• Find estimated  
• Find distribution of ,  

♦ Exact finite sample distribution → but this is rare 
♦ Approximations 

 Asymptotic, ∞ 
 Bootstrap (draw pseudo-random samples) 

2. Bayesian inference: assumes that  is a random variable from a probability distribution 
  is a r.v. 
• No true value  
•  has an a priori density  

 Goal is to find an a posteriori density |  

a priori
|

likelihood

,
joint

 

with  

|
,
,

 

 
 Properties of estimators (Note: an estimator is a statistic.) 

 Unbiasness:    (1st moment) 
 Efficiency:   is more efficient than  if  

 Classify the estimator according to a loss function 
• Most common: MSE 
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• MSE does not provide complete classification 
• Clearly,  is not admissible because it is dominated by  and  across all 

possible values of . However, we cannot rank  and . 
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Linear Regression Model (Chpt 1) 
 

 Basic assumptions 
 Dependent/LHS variables (Regressands):   
 Explanatory/RHS variables (Regressors):  , 1,2, … ,  
 Goal: explain  as a function of , 1,2, … ,  

 
 Data: 

 Indices: 
 Cross-section: 1,2, … ,   
 Time series: 1,2, … ,  

 Dependent variable:  

 

 Independent variable:  

same variable,  different observations

       

same observation,  different variables

 

   

 
 

 We want to explain  as a linear function of  

     

i.e. equality between vectors in  component by component. 

      
error term

 

 The error term (or disturbance) is connected to the model 
 Note: do not confuse the error term with the residual (the realized error) 
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 The residual is connected to the estimation method 
• E.g.  OLS estimation →  with OLS residual 

 

GLS estimation →  with GLS residual 

 

 We need some assumptions about the probability distribution of the r.v. 
 

 Model is implied by restrictive assumptions 
 Assumption 1.1. Linearity 

 
 Example in the book about wage equation 

 
log  

 Assumption 1.2. Exogeneity 
| 0 

 Reminder: Law of Iterated Expectations. 

|
r.v.that depends on 

 

Here, 
| 0    0 

This is the exogeneity assumption. Note that the implication doesn’t go the other way. 
 What happens if 0 but | 0? 
• Endogeneity or simultaneity problem. This happens when 

♦ Some factors are observed by economic agents but not by the econometrician. 
♦ These observations are taken into account by the agent to determine  
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Exogeneity Assumption of the Linear Regression Model 
 

 The linear regression model 

 

2 assumptions: 

1 , 1, … , linearity

2 | 0    0 strict  exogeneity

 

 Implications of exogeneity assumption.  
1. 0. This is by the Law of Iterated Expectations. Consider 

| |  

|  

|
 

 

,
 

 

,
 

 
 

 

 
 | 0  by the exogeneity assumption 
 | 0 0  

2. In any observation, each regressor is orthogonal to each one of the error terms, i.e.  
0, , 1, … , , 1, … ,  

0
0

0

, , 1, … ,  

• Proof. Since  is an element of , the exogeneity assumption implies that 
| 0 

Then, it follows that 
0. 

3. Regressors are uncorrelated with the error terms: 

, 0    ,
,

0, , ,  
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 Example. Production. 

ln     
elasticity

coefficient

ln  

 | 0 (OK to assume | 0) 
 Suppose the firm has information that is not observed by the econometrician 

    
observed by the firm

but not by the econometrician

    
unobserved

by both parties

 

Then, 
 

 Problem of the firm  →  maximize expected profit 
max  

FOC w.r.t. to  
   

     

  

ln
1

1 ln
1

1 ln
1

1 ln

1
1 ln

1
1

 

  1 ln 1  
 Exogeneity assumption: 

ln | ln |
 by exogeneity

 

ln | |  
• Note that the exogeneity assumption can be stated in two ways 

1. | 0 
2. |  

Because  is unobserved, it is likely OK to assume | 0. But, 
| 1 ln 1 |  

1 1 ln  

Then, 
ln | ln 1 ln  

1 ln  
• Therefore, exogeneity implies 

| 0    |  
when  
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• Here  
ln ln     ln | ln  

 
 More generally, when there is a link between the error term, , and the explanatory 

variables , there will be a simultaneity issue or endogeneity issue. 
 This issue leads to simultaneity bias 
 In our example, 1  

 
 Notations again 

,  

   , 1 -vector, with superscript denoting the th RHS variable 
   , 1 -vector, with subscript denoting the th observation 
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Property of the Matrix   
 

 Assumption 1.3. No multicollinearity. , i.e. full-rank (or full column rank). 
It means that the  columns of  (i.e. , 1, … , ) are linearly independent. 

 Note. Max. linearly independent rows = max. linearly indep. Columns = max. size of 
non-zero (or non-degenerate) minors (or submatrices)  

 
 Interpretation 1. If there is  such that  

 

 does not help me explain .  
 In theory, this assumption has cost 0 (i.e. can make this wlog). 
 In practice, we can have almost-perfect multicollinearity. This will create problems 

when we try to invert the matrix . 
 

 Interpretation 2. Suppose 0. Then the no multicollinearity implies necessarily that 
0, i.e. . So when we make the assumption of no multicollinearity, we are also 

assuming that the model is meaningful. 
 

 Interpretation 3. A theorem in matrix algebra states that if the matrix  is of full column 
rank, then  is non-singular.  
 Proof. Let  be a 1 vector.  

0 

This means that  is a positive matrix. Thus, 
0    0 

   is full rank 
  1, … ,  is linearly independent    

  0    0, 1, … ,  

 0    0  
• This is a useful way to show that a matrix is non-singular. That is, it is equivalent 

to showing that it is positive definite (as long as I know it is positive).  
♦ Let  be an  matrix. Then, 

 is positive (or positive semi-definite) if for all 1 -vector  
0 

 is positive definite if for all 1 -vector  
0   and   0    0 

 
 Interpretation 4. ∑ . Suppose  are iid. Then by the WLLN 

1

sample mean

      

true mean
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 Slutsky’s Theorem.  

det
1       

det  

Recall convergence in probability 
| | 0, 0 

If we know that 0, 

| |
2

      
0    | |

2
      

1   

  2
      

1 

So     det 0. Thus, for  large enough, ∑  should 
be invertible (as long as det 0). 

 Question: Why should we maintain this assumption?  
•  is  (positive semi-definite): 

0 
• Positive definite? 

0    0    0   . . 
0 only if there are multicollinearities. 
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Geometric & Statistical Interpretations of Least Squares 
 

 Naïve approach: 

 

Choose  such that 

,  

 Note: by definition of OLS,  

1 1
    

1 1
 

So the problem is  

min     min . 

 
  is characterized by  orthogonal relationships 

    ,     0   

 0 
system of   linear equations

   

     
   

 
 Notations: matrix of orthogonal projection  

matrix of orthogonal projection on  
 

 Should be true for all   
 Can identify  as  

 
 Matrix of orthogonal projection on the orthogonal of , i.e. : 

     

∑ ,   and   
 is a subspace of  
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    OLS residual 
 Note that 

       
  

  

 

Mathematically, 
 

 
0 

 Properties of Projection Matrices 
 Idempotence and symmetry are necessary and sufficient conditions for projection 

matrices 
• Symmetry:  
• Idempotence: ℓ  for any ℓ  

 
 Application: the Frish-Waugh Theorem (cf. P.72, ex.4) 

 Motivation:  
 

where  is  and  is . 
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Geometric Interpretation of Linear Regression (cont’d) 
 

 Consider the true model:  
 

 Question: How bad/wrong is it to regress  on  only? 
 Assumptions for the true model: 

(i) | , 0 
(ii)  

 Assumptions for the “reduced” model without :  
(1) | 0 
(2)  

 
 Compare (i) and (ii) to (1) and (2). 

 Easy to see that (ii)  (2)  
 What about (i) v.s. (1)? 

| |  
| |  

|  
 In order to get (1), I need |  to be linear in , i.e. 

| Γ 
Thus, the true model doesn’t imply the “reduced” model 
 

 Even if the “reduced” model is not necessarily implied by the true model, I can still perform 
OLS: 

        
̂

 

 ?    . .  ? 
 

 Frish-Waugh Theorem.  
 

 Proof.  

̂
arg min  

 Step 1. Concentrate w.r.t. . For given , minimize w.r.t.  only. Get  
min  

Get  such that 
 

 Step 2. Minimize the concentrated objective function w.r.t. .  

min     min  
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 Remark. In Practice,  
⁄           
⁄            

Then, 
,  

 Remark. Corollary of FW Thm. If , then  
,  

So . This means that  
    ℓ, , ℓ 

  ℓ 0, , ℓ 

  
1

ℓ 0, , ℓ 

But this does not mean that  and ℓ are not correlated. Not quite  between  and 
ℓ, only orthogonality condition. 

 
 Next we consider the statistical interpretation of OLS 

 Finite sample properties 
 Interpretation 
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Finite Sample Properties of OLS 
 

 Recall the standard assumptions 
(1)  
(2) | 0, . . 
(3) | | 0, . . 
 
2 additional assumptions: 
(4) | , . .   →   homoscedasticity 
(5) | 0,  

 
 Properties: 

 Under assumption (1) – (3)  
 

 Proof. Use the law of iterated expectations: 
 

|  
|  
 

 
 Under assumption (1) – (4) 

 
 Proof.  

 

 
 

|  

 
where 

 
 

 
 

 Gauss-Markov Theorem (BLUE). 
Under assumptions (1) – (4), the OLS  is BLUE (best linear unbiased estimator). That is, 
for any linear (w.r.t. ) estimator,  

, . .   
we have 

      is psd. 
 

 Cramer-Rao Theorem.  
Under assumptions (1) – (5),  is BUE (best unbiased estimator). 
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 Property:  Under assumption (1) – (5) 

0,  
 Proof. Since 0, , 

 
Note this is not the same as the central limit theorem, because we have a finite sample. 

 
 Remark. If we want the unconditional distribution of , there are two options: 

 Assume fixed regressors 
 Asymptotic theory (i.e. as ∞) 

 Remark. Standardize : 
⁄

0,  
 This does not depend on .  
 This is the unconditional distribution, i.e. 

⁄
0,1  

 In general,  is unknown!  →  we need an estimator of  to use the previous result. 
1 1

 

• Proof  (  is unbiased). 
1

univariate

1
tr

1
tr

1
tr |

1
tr |

tr  
 

 
 

tr tr tr  

tr  

 
where the trace has the following property: 

tr tr tr  
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Statistical Interpretations of OLS 
 

 Recall the model 

        
constant term

 

Matrix of explanatory variables: 
1
1

1

      
vector of 1's

 

 Adding a column of 1’s to the regressors makes the linear regression a affine regression. 

 
 Orthogonal conditions between the residuals and the explanatory variables. 

0
0

, 1, … ,  

We have 1 linear equations to find 1 parameters  and . Note that  

0    0 

divide by     0 

   

  0  
  is the empirical average of the OLS residuals. So by including a constant term, we 

are imposing that on average ??? is correct. 

 
  

  

  

  

,
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 With a constant term, the average residual is zero, and the average point belongs to 
the regression line 

 If we do not introduce the constant term,  
 

Then the regression line goes through 0,0 . However, this does not minimize the 
sum of squares. 
• If, in addition, you want the average point to belong to the regression line, then 

the regression line is completely determined. 
 

 Plug in the expression for  

mean deviation mean deviation

 

Rewrite the orthogonal condition 

0    
1

0 

  
1

0, 1, … ,  
where  

1 1
 

is the sample (empirical) covariance between  and . Notation:  , . 
1 1

,

 

 The OLS estimator is the ratio of the ,  and . 
 We can make the interpretation of -  only because we include the constant 

term in the regression. Without the constant term, we only have the orthogonality. 
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Geometric Interpretation of OLS in the Space of Random Variables 
 

 Recall  

, arg min
,

1

space of 

, ? arg min
,

space of r.v.

 

 
 In : 

 
 In space of r.v. that are square integrable, 

 
 The norm (or distance) is  

, 
, , the inner product  

The inner product is the extension of the norm, so , . 
 

 Computation of | : 
1

1, … ,       
0

0  

From  we get 
 

Plug it into the second expectation: 

0     0 

  
,

 

If  is nonsingular, 
,  

 This is NOT an estimate!!! It is a population value (as opposed to a sample value) 

1, |

,
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 Conclusion:  
|  

with 

,
 

same formula as the one we got for the estimates ,  in the space of . But now we 
have population moments. 
 
 Remark. Why do we have  nonsingular? 
•  is PSD , 0 
• 0    

. .

 constant 

• Therefore,  is nonsingular if and only if no linear combination of  is 
constant (except if 0) 

•  [under iid assumption]  
 

 Remark.  
• 0 
• 0  or , 0 
• ,  are defined by the above 
• These are not assumptions 
• |  is the best linear predictor of  as an affine combination of ; that is, 

it is the solution of the minimization of  
|  

 
 Remark. |  is the best predictor of  as a function of ; that is, it is the 

solution of the minimization of 

, ,
0
, 0,  

 
Claim: the solution of the minimization problem is 

| ,  
Proof. Consider  

| ? 0 
  | 0 

 
 Corollary 1. | |  if and only if |  is affine with respect to .  

|
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 Corollary 2.  
|

 
|  

Proof. Need to show that 

|
what I project

|
candidate for

projection

1,  

Introduce : 
|

,

|
,

 

 
 Final comments. 

 Exogeneity assumption in : 
 Strict exogeneity: | 0 
 Weaker exogeneity: 0, , 0 for all  

 Is it true that |  is linear? 
 True with: | 0     and  are stochastically independent 

 What do we do when it is not true (i.e. |  is not linear)?  
 Add some terms to account for nonlinear effects, e.g.  or ℓ , or more 

complicated functional form 
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Large Sample Theory (Chapter 2.3) 
 

 Maintained assumption: ,  are jointly identically distributed (i.d.) 
 Consequence: , ,  are jointly identically distributed 
 Remark. , which is a constant (i.e. independent of ). But there can be 

heterogeneity at the conditional level, i.e. 
| . 

 With the assumption | 0, we can write: 
|      

 
 Law of Large Numbers (LLN). Consider , , i.d. and integrable (i.e. | | ∞). 

 LLN: 
1

 

 
 Theorem 1 (SLLN). Let  iid and integrable. 

. .
 

Recall the definition of almost sure convergence: 
lim 0 1. 

 
 -LLN:  

 
Recall the definition of  convergence: 

    0 
This requires  to be  integrable. 
 Note: 

 

So  

0    
0

0  

In our case:  is a constant. 

    0 
 

1
 

1 1
,

,
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2

,

 terms

 

 
 Theorem 2 ( -LLN). If  such that ∞, and  and  independent 

on , then 

    
1

, 0 

 
 Theorem 3. Both the SLLN and -LLN imply the WLLN (convergence in probability). 

 Note that there is no clear logical relation between almost sure convergence and  
convergence. 
 

 Consistency of OLS estimators (i.e. estimator of  and ) 

,   
,   . .

| 0  

 We know 1 estimator, i.e. the OLS, by solving  
      0 

Want to compare the OLS estimator with the IV-estimation 
0 

where       
 OLS is a special case for IV-estimation. 

 
 Motivation:  

| 0    0,  
where  is the true unknown value.  

, 1, … , , . .   
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The IV Estimator 
 

 Consider a matrix  
  

If I assume: 
| 0    | 0 

  0,  
If I define .  
 

 Can we find  such that  
1

0,     0 

   

Need , because otherwise there will be more parameters than equations. If the number 
of instruments is the same as the regressors, then the matrix  is invertible. However, if 
there are more instruments than regressors, then we need to use “pseudo-inverse”.  
 

 Consider a left pseudo-inverse of , call it Π : 
Π  

 
 Definition. Under the maintained assumptions 

 
 

Define:  
Π  

where Π  is as defined above.  
 

 Example of matrix Π . Let Ω be a positive definite matrix of size  

Π Ω Ω  

The inverse exists because whenever a full-rank matrix is multiplied by another full-rank 
matrix, the product is still full rank. 
 
Note that this is a class of pseudo-inverse, because a different Ω will produce a different 
Π .  
 
Special case where : 

Π Ω Ω  
   

If we choose , then we’ll get the OLS estimate.  
 
In general, , so there is no unique   →  we can talk about optimal choice of Ω. 
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 Is  consistent? Recall the model . 

Π     Π  
Π Π  

Π
?

 

 
 Assumption 1. Π Π, where Π is a fixed full-rank matrix. 

 Why is this assumption reasonable? 
• Case where . 

Π     Π  

Remember that  is  and  is . By LLN: 
1

 

Here, Assumption 1 is equivalent to the LLN for  (or ). 
 

• Case where . 

Π Ω Ω 

where  

, . 
So, same here, we need LLN for  
 

 In sum, the assumption is used to  
Π  

Π  

 
 Assumption 2. The WLLN for  

1
 

 
 Assumption 3. 0 . That is, ’s are valid instruments. Non-correlation 

between  and  
Therefore, . 
 

 Theorem. Any IV estimator Π  such that  
 Π  
 Π Π 
  are valid instruments 
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 WLLN for   
are satisfied is weakly consistent, i.e. . 
 

 Consistent estimator of . 

plim
1

 

 The problem here is that ’s are not observed.  
  are residuals and observed. 

 
 Theorem. Given WLLN for , , and . If  is a consistent estimator of , 

then 
1

 

where .  
 Proof.  

1
 

1
 

1
 

1 1 2
 

 
 

 Remark. The above estimator  is consistent, but usually biased in small/finite samples.  
 For OLS,  

1 1
      

 Proof.  

 

The last inequality comes from the orthogonal projection. We have equality if and 
only if .  

    . 
 
 

 What is the difference between the two? 
| |  
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|  
tr |  

tr |  

tr |  

 
For OLS estimator under the assumption of spherical variance (i.e. | ),  

|     
1 1

 

So the unbiased estimator ∑  underestimates . 
 
When  and  become closer and closer to each other. 
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Spherical and Non-Spherical Variance of the Error Term 
 

 Recall that . Today we want to consider the “non-spherical” case. 
 Can we standardize the multivariate ?  

, 0, Ω  
Ω Ω ⁄ Ω ⁄  

 
 Any  symmetric matrix Ω can be decomposed as: 

Ω Λ  
where  (i.e.  is orthogonal matrix) and Λ is diagonal.  

 Note that Ω is symmetric but also positive definite. So all its eigenvalues are strictly 
positive; that is, Λ ⁄  is well defined. 

Λ Λ ⁄ Λ ⁄  
Λ ⁄ Λ ⁄  

Ω ⁄ Ω ⁄  
Notation: Ω ⁄ Ω ⁄ . Then, 

Ω ⁄ Ω ⁄ Ω ⁄  
Ω ⁄ ΩΩ ⁄  
Ω ⁄ Ω ⁄ Ω ⁄ Ω ⁄  
 

  Ω ⁄ 0,  
  Ω ⁄ Ω ⁄ Ω  

 
 Remark. The shape of a confidence region (because we’re considering a vector) 

Ω  
where  is the appropriate quantile of  distribution.  
 In the spherical case: Ω ,  

 

→  shape = sphere centered around 0 with ray  
 More generally, 

Ω

0 0
0

0
0 0

     

→  shape = ellipse centered around 0. 
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Asymptotic Probability Distribution 
 

 Reminder: 
 Suppose ,  identically distributed. Then, WLLN says 

1
 

 If ∞ and  iid, then 
1

 
Suppose we rescale by 1 2⁄ , 

0 if  
1
2

∞ if  
1
2

 

 
 Central Limit Theorem  (Lindeberg-Levy).  

If ,  is iid with  and Σ , , then 

√ 0, Σ . 
 

 Remark. Convergence in distribution.  if and only if we have something like 
 

If dim 1, then 

      where the function is well‐defined   

or   
Recall that  

    . 
When  is deterministic,  

     
because in this case the joint distributions of  and  are known.  

not deterministic

deterministic
     

 
But (!!!)  

. .

. .
     

 
 Corollary.  

0, Σ     0, Σ  
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 Asymptotic distribution of IV estimation. 

Π , Π   . .  Π  
  Π ,  

And  

√ Π Π
√

√
∑

 

 
 Assume: , ,  jointly iid, and  are valid instruments  

 
Σ  

 Theorem.  

√ 0, ΠΣ Π  
 Interpretation. For  large enough, the probability distribution of  can be 

approximated by , ΠΣ Π . 
 Can assess this approximation by Monte Carlo. 

 
 Lemma (in Davidson’s Book).  

min ΠΣΠ , . .  Π   for some given matrix  
where Σ ,  is positive definite, ,  has rank . The solution to the above problem is 

Π Σ Σ . 
 

 Remark. Π  is the solution of the minimization if and only if 
Π  
Π ΣΠ ΠΣΠ, Π Π  

 What does “ ” mean? Consider a vector , where  and  are uncorrelated. 
 

We say 
      is psd 

  0 
 In our case, 

√ Ω. 
Suppose there is another estimator  such that  

√ Ω . 
Then, 

Ω Ω    Ω Ω 0 
  Ω √ √ Ω  

i.e.  is better than  in terms of variance. 
 

 Proof of the lemma. Suppose Π Π . We have  
Π Π     0. 
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Then,  
ΠΣΠ Π Σ Π  

Π ΣΠ Π Σ ΣΠ Σ  
We want to show that  

ΠΣΠ Π ΣΠ 0    Π Σ ΣΠ Σ 0 
Note that  

Σ 0    Σ Σ 0. 
It is enough to show that  

Π Σ ΣΠ 0 
However, this is not easy, so we would instead show that  

Π Σ ΣΠ 0 
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Asymptotic Variance of IV Estimator 
 

 Recall from last time 
 Theorem.  

√ 0, ΠΣ Π  
 Lemma.  

min ΠΣΠ , . .  Π  
with Σ positive definite and . 
 

 Proof of Lemma.  
Π Π     0 

ΠΣΠ Π Σ Π  
Π ΣΠ ΣΠ Π Σ Σ  

To conclude that ΠΣΠ Π ΣΠ 0  (because Σ 0  and Π ΣΠ 0 ), it is 
enough to show that  

ΣΠ Π Σ 0 
But since ΣΠ Π Σ , it is enough to show that  

ΣΠ 0 or Π Σ 0 
Idea: define Π  such that  

Π Σ 0. 
Note that 0. Then, for any matrix , define 

Π Σ  
such that Π Σ 0. We also need to make sure Π  as defined is a valid candidate, i.e. 

Π     Σ  
where the matrix Σ  has full rank and thus invertible. Therefore, let  

Σ . 
Therefore, the solution to the minimization problem is 

Π Σ Σ . 
This completes the proof. 
 

 The “best” IV estimator (i.e. the one with the smallest asymptotic variance).  
Π  

Thus,  
√ Σ  

with Σ . 
 
So the optimal IV estimator (for given ): 

Π  
where Π Σ Σ . 
 
Recall that the difference between Π  and Π  is that Π Π . So to apply LLN, 

Π Σ Σ . 
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Feasible Estimate of the IV Estimator 
 

 Recall optimal IV for given : 
Π Σ Σ and Π  

 
 Recall Σ is a consistent estimator of Σ  

 Note: it is enough to provide estimate of Σ , e.g. Σ  
 

(1) Conditional homoscedasticity   
  
 Endogeneity:  because  

Σ  

Take Σ . Then, in the conditional homoscedasticity case 
Π      

where .  
 Remark. This formula is very similar to the Frisch-Waugh, and leads to a 2-step 

procedure: 
(i) “Projection”:  , i.e. OLS  onto  

(ii) “OLS”:    onto  
 

 Theorem. 2S-OLS is the optimal IV for given  under conditional homoscedasticity.  
 

 Special case where , i.e.  are exogenous. 
 

| | , spherical  
Then, we have 

|  
 

 If we want to compare OLS and IV variances: 
 

 
We can conclude that  is bigger, because whenever we do an orthogonal 
projection, the length of a vector becomes smaller (norm-wise). So  

    0 

  . 
Therefore, OLS is always as good as IV, and sometimes better. 
 

 Why do we do IV then? 
• When  are endogenous. [Recall:  in this case] 
• When  are exogenous and conditional homoscedastic: 
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So that we capture some information that is left in the . 
 

 Theorem. If , where  is a consistent estimator, then 

Σ
1

Σ  

under the appropriate LLN. 
 Proof.  

1 1
 

1 1 2
 

Need LLN for  and , and . 
This is more restrictive because we need moments of order 4. 
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Asymptotic Variance (cont’d) 
 

 Σ  with estimator  

Σ
1

 

 Remark. Eicker-White estimator 

Σ
1

Δ  
where  

Δ

0

0

 

Coefficient , ℓ  of Σ is  
1

ℓ  

Note that Δ is not an estimator of Σ. 
 The feasible estimator is then, 

Σ Σ  
with Σ Δ . 
 It has the same asymptotic distribution as the infeasible estimator 

Ω Ω  

where Ω | . The variance of  is 
| |  

 |  
Ω  

Ω  
where Ω Ω . 
 

 The optimal instruments (i.e. the best matrix ). 
 Theorem. Ω  is minimum for Ω  

 Ω  is the optimal instrument 
 Ω Ω . This is the generalized least squares (GLS) estimator 
 | Ω X  

 
 Comments: 
• GLS is characterized as the optimal IV estimator when | Ω  and 

 
• GLS is infeasible (because Ω is unknown) 
• The theorem is also true when Ω is not diagonal. 
 

 Proof. We want to show that, for any , 
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Ω Ω  
Note that the optimal  is given by 

Ω Ω ⁄ Ω ⁄  

Write any other  as  
Ω ⁄  

Then,  
    Ω ⁄ Ω ⁄ Ω  

   
 

 Interpretation of GLS: 
 IV estimator with Ω ,  

0    Ω
oblique

projection

0 

 
 

with | Ω Ω ⁄ Ω ⁄  
  Ω ⁄ Ω ⁄ Ω ⁄  

with | . 
 
Now that we have spherical errors, we know that OLS is optimal. 

Ω ⁄ Ω ⁄ Ω ⁄ Ω ⁄ Ω Ω  
 This is the GLS formula! 
 GLS is simply OLS on standardized errors. 

 
 Feasible GLS 

 Ω can be  
 diagonal, if iid 

Ω

0

0

 

and  

Ω ⁄ Ω ⁄ Ω ⁄      

Then, GLS is 

min

sum of weighted squares 
of residuals

 

This is the WLS (weighted least squares). 
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 serial correlation, GLS is usually useless. 

Ω ⁄ Ω ⁄ Ω ⁄ Ω ⁄  

If Ω is not diagonal, then Ω ⁄  contains mixture of different observations of . 
This does not make sense. 
 

 Feasible GLS or optimal WLS: 
Ω Ω  

Here the Eicker-White does not help because we need an estimator of Ω.  
We need some assumptions about the covariance structure of , e.g. 

 
where . 
 Summary: 

(1) OLS of  on   →   and  
(2) OLS of  on   →   and  

(3) min ∑   →   which is asymptotically equivalent to . 
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Asymptotic Tests 
 

 Wald tests of hypothesis about : 

√ 0,   

,

0,  

Here  is (either linear or non-linear) restrictions on the  elements in . 
 

 Example 1. Production function 
ln ln ln  

Testing constant returns to scale: 1 0. 
 

 General linear hypothesis: 
0 

where  is , ,  is , 1 , and . So we are testing  linear restrictions on 
 parameters. The full column rank assumption means that we’re not testing the same 

restriction twice. 
 In Example 1, we have  

0 1 1 , 1,  

So we’re testing one ( 1) restriction on three parameters. 
 

 Example 2. Non-linear restrictions. 
 

 Introduce the lag-operator : 
?

 

where . Treating the sum as a polynomial, we have 

1     1  

This means we have a finite number (i.e. 3 in this case) of the restrictions. This allows 
us to accommodate an infinite number of parameters: 

, order 0  
, order 1  

0, order 2  
0, order 3  

 
 3 free parameters , ,  
 All the other ones are functions of them: 

 

which is nonlinear. 
 Formulate the hypothesis as  
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    0 

Use Taylor expansion: 

 
where  is a vector of the true values. 
 

 General case:   
 

 
Then, 

,

,
,

 

Recall that  

 
We require that  
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Asymptotic Testing 
 

 We have some estimator  of the true parameter , and  

√ 0,  
 0, where  is a vector of size  

 If  is linear,  with  
 If  is nonlinear, we require  

 
 What is the pdf of ? 

 Delta method.  
Suppose that √ 0, , and that . Then, 

√ 0,  

 Proof. For simplicity, assume that we’re in dimension one, i.e. 1. We use instead 
of the Taylor expansion, the mean value theorem. 

 

where  is between  and . Rescaling by √ , we get 

√ √  

From  is between  and  and     . By assumption, ⁄  
is continuous, we have 

. 
Recall that  

    . 

This completes the proof. 
 

 Under 0, 

√  0,  

  √  √   
 

 Critical region (i.e. region where  is REJECTED) of the test: 
 

the quantile of  distribution with level 1 . 
 

 Two properties of asymptotic tests: 
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 Property 1 (under ). If  is true, Pr ,  [test result is true at the asymptotic 
level, cf. the Monte Carlo exercise of hw2]. 

 Property 2 (under ). If  is not true, Pr 1,  [consistent test].  
 Proof. 

 

a p.d. matrix
number

∞ 

From ∞ we conclude that Pr 1. 
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Asymptotic Tests (cont’d) 
 

 0,  is 1 ,  is 1 ,  
   is the unconstraint estimate –  does not use the information contained in  
  close to 0? 

  

Under ,  
 

  is the critical region,  
 

  when  is true [correct asymptotic size] 
 1 when  is not true [consistency] 

 
 So far, we’ve been focusing on  

0 vs 0 
What if we want to test something more challenging? 

 Idea: Consider  that depends on  and gets closer to  as  increases 

√
,  

This is a sequence of local alternatives.  
 Note that  is not fixed, but √  is fixed (assuming  converges at rate √ ) 

√ 0,  

 

√ √ 0,  

Under the sequence of local alternatives: √ , 

√ ,  

  √
⁄ ⁄

,  

  ,  

 Recall that if  
,     ,  

Non-central  with  degrees of freedom and non-centrality parameter .  
 

 Property 3. Under the sequence of local alternatives, 

√
,  

we have  

, . 
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 Asymptotic power of the test under the sequence of local alternatives  

,  

 The larger the non-centrality parameter, , the more powerful the 
test is. The parameter is large in two cases: 
•  is large – but this is not very useful, as we want  to be close to zero 
•  is small: 

make small

 

We want to pick the efficient estimator which is associated with the “smallest” 
asymptotic variance. 
 

 Wald confidence sets: 

√ 0,  

    
 

 Confidence set about  with level 1  asymptotically: 

 

1  
 

 Finding feasible asymptotic variance 

 

    
where 

Σ  
with 

Σ  
Therefore, 

  
1

Σ
1

 
 
f.i When  [OLS] 

Σ     Σ
1

Δ  
which is the HCC estimator with 
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Δ

0

0

 

or in the homoscedastic case 

Σ  
 

 Restricted least squares under a linear hypothesis 
,  

Under homoscedasticity, 

 

Here  is the OLS estimator, and ∑ . 
 

 Consider the constraint optimization problem: 

min , . .    

Let  be a vector of Lagrange multipliers.  
 

    2 0 

  2     
1
2  

So  as long as 0, i.e. anytime the constraints are binding. 
1
2

invertible
    2  

Finally, 
 

Difference between the adjusted values: 
 

   
 

This is the numerator of the Wald test statistic , i.e. 

 
 

 Geometric interpretation 
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 Pythagorean theorem: 

 
 

   

⁄

 

 
 The Gaussian case (small sample). 

Assume 0, , or ⁄ 0, . Then, 
,      

and |  (as a linear transformation of  
 

 

 
From the Pythagorean theorem: 

 

  
1 ⁄

⁄ ,  

under the null. Note that  

 

 
If  is not true,  does not mean 0 anymore, because we imposed the incorrect 
restriction . 
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• Fisher test of : 
⁄

⁄ ,  

and  under  
♦ This is exact!! Because I have the exact finite sample distribution of test 

statistic. 
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Asymptotic Test (cont’d) 
 

 Recall from last time the Fisher test of  
⁄

⁄ ,  

 under . 
 

 Asymptotically, 
,  

 We’re interested in knowing whether  
,

?
 

If this is the case, then Wald testing and Fisher testing are equivalent asymptotically.  
 

 Proof of the above convergence. 

,
⁄

⁄  

Note that the denominator converges to 1: 
1 1

, 0,1  

1 
 

 Connection with  
  only makes sense when there is a constant in the regression model: 

 
0 

 
Using the Pythagorean theorem: 

1

∑
total variance

1

∑

with 
residual variance

1

∑
explained variance

 

      

,   
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By definition, 
 

  

Recall, 

1  
Critical region (asymptotically): 

1 or  

Sufficient to show that  
1

1 1 

This is true under . 
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Testing Conditional Homoscedasticity 
 

 OLS:  with  
|  

1
 

can be consistently estimated by HCC 

 

 Test of |  for any , i.e.  conditional homoscedasticity 
 Idea is to compare 

1
and

1
 

 
 White (1980) 

1
0 ? 

Here  is a ,  matrix with 1 2⁄  different terms 
 Define  that contains all the different terms of . 

1
0 ? 
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Testing for Conditional Homoscedasticity 
 

 Recall from last time: 
1

0 

where  is a vector of different terms in . 

√ 0,  
Define  

 
where  is the number of non-constant terms in . 
 

 In practice, we perform an auxiliary regression: 
 

 The assumption we’re interested in is  
0 

That is, if there is homoscedasticity, then the regressors should not be able to explain 
much of the residuals. 
 Constrained estimator:  
 Unconstrained OLS estimators:   and the associated test statistic  
 Reject homoscedasticity if and only if  
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Dynamic Regression Model 
 

 General framework 
 Need for ergodic stationarity  
 Dynamic regression model: 

, 0 
  is still called the explanatory variable, but there are two kinds 
• Lagged values of : , , … ,  
• Other variables:  , , … , , where  is 1 
So the regress model is 

 

So here, 
,  

where ,  contain things like 
, ℓ , , , … 

 
 Definition. A stochastic process  is (strictly) stationary if for all  and all , the joint 

probability distribution of , , , … ,  depends on , , … ,  but not on . 
 Definition. A process is weakly stationary (or covariance stationary) when  and 

,  do not depend on . 
 Note.  

  is iid     is a stationary process 
  is stationary     is identically distributed with some serial dependence 

 
 Stationarity is not sufficient to get LLN 

 Example.  iid, and  is independent of  
 

Here  is stationary: 
, ,  

This implies that , , , … ,  has the same 
probability distribution as any , , , … , . 

1 ?
 

1 1
 

Unless , i.e.  is a constant. But this is not true in general. 
 To avoid this situation, we would need to assume ergodicity.  

 
 Ergodicity (informal definition): A random event involving every member of the 

sequence has either probability 0 or 1.  
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 Example (cont’d with the previous). If  is either 0 or 1, then  is a constant 
(i.e.  is deterministic). So the counter-example does not work any more. 
 

 Ergodic Theorem. If  is stationary, ergodic, and integrable, then  
1

. 

 Hayashi (page 101): “A stationary process is ergodic if it is asymptotically independent” 
lim , , … , , , , … , 0, ,  

 
 Theorem. Let  be stationary, ergodic with finite variance process.  

1
, 0 

 The converse (non-correlation    asymptotic independence) is true only for the Gaussian 
processes.  
 

 Note 1. If we know that  

, 0    
1

, 0 

But the converse is not true, since 
1

, ,
1

 

 
 Note 2. With , ,  

1
,

?
0 

 
 Need for Martingale Difference Sequence (MDS) 

 Example. OLS:  with 
 

  √
√

∑

 

Think about  filtration, i.e. an increasing sequence of -fields 
 

 Interpretation:  contains everything we know at time , i.e.  where . In the 
dynamic regression model, ,  

, ; ,
predetermined variables

 

This is the smallest -field containing all the predetermined variables. 
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| 0. 
 

 Definition.  is -adapted if . 
 We say that ,  is an adapted sequence. 

 
 Definition.  is a martingale with respect to  if  is -adapted, integrable, and 

| . 
 

 Definition.  is a martingale difference sequence (MDS) if  is -adapted, integrable, and 
| 0. 
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Time Series (cont’d) 
 

 A word on m.d.s.: 
  is martingale with respect to   →  |  

  
 | | | 0 

 
 Theorem. If ,  is m.d.s. and ,  is adapted, then 

(i) , 0 
(ii)  is a m.d.s. with respect to  

 
 Proof. Statement (i): 

,  

|  
|  

0 
Statement (ii) can be proved similarly. 
 

 In cross-section, we assume that  is serially independent 
  ,   are independent 
  , 0, ,  

  is mds (with respect to “natural filtration” ) 
  | 0  and  , 0, ,    

  is serially uncorrelated if and only if 
, 0,  

 Serial independence is stronger than mds (serial uncorrelation with any function of the 
past), which is in turn stronger than serial uncorrelation (with the past) 
 mds gives use CLT with serial dependence 
 serial uncorrelation gives WLLN 

 
 Theorem (WLLN). If  is a stationary mds, then 

1
0 

 Note: 
  is mds     is mds 
  is stationary and ergodic    ,  is stationary and ergodic 

 
 Theorem (CLT). If  is squared integrable, stationary mds such that  ∑ , 

then 
1

√
0,  
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General Method of Moments (GMM) 
 

 GMM Orthogonality Condition (cf. Hansen (1982) Econometrica) 
 General idea: Estimation is based on  

 Observation of a sequence  which is stationary and ergodic 
 Structural knowledge about ,  (where  is known but  is unknown) such that 

the true unknown value of , say , is characterized by ,  a mds with respect 
to  
 

 Two different cases 
(1)  is iid, i.e. , 0  →  unconditional moment restriction (UMR) 
(2) , , where  

•  is the error term with | 0. Here  is the predetermined 
information.  →  conditional moment restriction (CMR) 

• . Note that  
 | 0     UMR 

But this is not the only way to come up with a UMR, e.g. use  where  is 
any function will also work. 

•  : all the variables entering into  and  
  , | 0 
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GMM (cont’d) 
 

 GMM orthogonality conditions 
 Unconditional Moment Restriction: , 0, where  is known and  is iid 
 Conditional Moment Restriction: | 0 

 Pick . Then we have the UMR:  

,

0 

 In general, any function   will work. So from one CMR we can potentially 
derive an infinite number of UMR’s. 
 

 Example 1. Dynamic Regression Model.  
,  

where there is no simultaneity issues

where  simultaneity issues
conditional heteroscedasticity

 

Predetermined variables (i.e. variables that belong to ) 
 ,   
 ,   if exogenous 

 
 Example 2. Euler equations 

max
,

, |  

 Constraints: 
 

where  is the returns received between period 1  and . 
 Differentiate wrt  to get FOC: 

| 0 

  1 0 

 
 More examples in Hayashi, Chapter 3.1, 3.2, on simultaneity issues and relevant instruments 

 
 Identification. 

, 0 
 Case 1. , . 

 

Here, . We need  to have full column rank, i.e. rank . Hence, we ensure that  
, 0     

 
 Case 2. Non-linear regression model 

,  
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, ,  
Locally, we can re-interpret the non-linear regression model as a linear one. 
 Rank condition:  

,
 

 
 Case 3. General Case: , 0 

 Identification assumptions: 
(1) Rank condition: 

,
 

where  is a functional vector of size . 
(2) , 0    . 

 
 Note. Order condition (necessary but not sufficient condition for identification) 

  is the number of parameters and  is the number of moment conditions 
•   →  just-identified case 
•   →  over-identified case 
•   →  under-identified case  

 From the identification point of view, more condition is better to hope that the rank 
condition is satisfied. 

 
 Assumption. ,  is non-singular. 

 Example. ,  
, , ,  

 

|  

 
To check that it is non-singular, we compute 

, 0 
  0, . . 

 
 Assumption. 0 0 and  non-singular (or no redundant IV in 

) 
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Consistent GMM Estimation 
 

 Definition. , 0 where  is 1 and  is 1 
 Case 1. Just-identified ( ). 

  is the solution of  
1

, 0  

  equations for  unknowns 
 Can “hope” to find such  

 
 Case 2. Over-identified ( ). We solve an approximation problem. 

min  
where  
 ∑ ,   
  is a  positive definite matrix which is called weighting matrix. 
• We get  for each matrix , i.e. a different GMM estimate. For notational 

simplicity, we drop the argument and write only  
 In the over-identified case, there is more “freedom” in the choice of . In contrast, 

in the just-identified case, whatever  you pick, the solution of  is going to be the 
same. 

 
FOC 

0 

Redefine  

, selection matrix  
Then,  

0 
 We started with  moment conditions and we selected  linear combinations of them. 
 The  rows of  are in the space spanned by the  vectors , 1, … , . 

 
 Consistency.  

arg min  
 Intuition: 

  is ergodic stationary 
 From ergodic theorem: 

1
, ,  

 Assumption on :  , where  is positive definite. 
 

 Criterion function 
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sample criterion asymptotic criterion
, ,  

Question: 

min  min  
? ?

 

 
 Theorem. Suppose  

 Θ where Θ is a compact subset of  
  is continuous with respect to  
  uniformly with respect to  
  is unique solution of min  

then, we have  
arg min  

 This is the general result for consistency of extremum estimators 
 

 Special case of GMM. 
 Assumption: stationarity, ergodicity,  positive definite as previously stated 
  satisfies 
• Continuity: ,  with respect to  
• Uniform convergence: LLN applied to , , uniform WLLN for  
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Consistency of Extremum Estimators (cont’d) 
 

 An extremum estimator is  
arg min  

 A special case is the minimum distance estimator 
 

where , 0, and  
1

,  

The GMM is 
, ,  

 
 Another case is the M-estimator 

1
, , ,  

Examples are: OLS, NLS, WLS, WNLS, MLE 
,  

1
,  

 
 Consistency of GMM-estimator (as a special case of extremum estimator) 

 Regularity: stationarity, ergodicity, positive definiteness of  
 Θ , where Θ is compact 
 Continuity of ,  
 Uniform convergence for . In this case, we require the uniform LLN for   

 Sufficient condition for uniform convergence of : 

sup , ∞ 

 
 Asymptotic normality.  

 We need to apply the mean value theorem to the FOC 

0 
Do a mean-value expansion.  
 Recall the MVT: Let  continuously differentiable. Then there exists 

 such that 

. 
Note that  could be different for each component , which is a vector. 
 

 The GMM case: 
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The FOC is  

2 0 

Focus on : 

 
The FOC becomes 

√ √
,Ω

 

Convergence: 
,

, , Γ 

We know that Γ Γ  is invertible, because Γ  is full column rank and  is positive 
definite. Then,  

√ Γ Γ Γ √ 1  
By CLT, we have 

√ 0 , Γ Γ Γ Ω Γ Γ Γ  
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Consistent GMM Estimator 
 

 Theorem (Asymptotic distribution of GMM estimator). Under  
 Consistency of GMM estimator 
 ,  is continuously differentiable with respect to  
 Rank assumption with respect to Γ: 

,
 

 ,  MDS 
 CLT for MDS 

We have  
√ 0,  

where  
Γ Γ Γ Ω Γ Γ Γ  

 
 Mean-value expansion of the FOC of 

 
FOC: 

2 0 

Note that for  in between  and  (may be different from different elements of ), 

 

   √ √
,Ω

 

By assumption, 
     

  Γ 

  Γ 
Then, 

Γ Γ 

Γ  

 √ 0 , Γ Ω Γ  

  √ 0,  
where  

Γ Γ Γ Ω Γ Γ Γ . 
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 Efficient GMM estimation 
 How to pick the efficient weighting matrix   →  want to minimize the asymptotic 

variance of the GMM estimator  
 The only flexibility we have is in choosing . Since  is symmetric, the idea is to 

pick Ω  so that two of the “blocks” in  cancels out with each other: 
Ω     Γ Ω Γ Γ Ω Ω Ω Γ

Ω

Γ Ω Γ  

  Γ Ω Γ  
So we have the efficient GMM estimator with  

Γ Ω Γ  
 

 Example. ,  

Ω  
,  

Conditional homoscedasticity (given ) 
  
 Ω proportional to  
 Weighting matrix  

1
 

 
The minimization problem is  

min
1 1

 

  min  

  min  

  min  
  min  

This means that the efficient GMM estimator corresponds to OLS of  on , or the 
2SLS estimator of  on . 
 

 The general case 
 Efficient weighting matrix Ω , where Ω , .  
 How do we estimate it? 

 2-step GMM 
 Iterated GMM 
 Continuously updated GMM 



Econ 837 Econometrics  April 4, 2011 

 Page 63 of 66 

 
 2-step GMM 

 Step 1: get a consistent GMM estimator with an arbitrary weighting matrix : 
min       consistent 

Usually, we pick .  
 Step 2: use  to get a consistent estimator of Ω: 

Ω
1

, ,  

Use Ω  as the weighting matrix and  
min Ω       efficient estimator 

Note that Ω  does not depend on . 
 

 Motivation for other practical GMM estimation methods: 
 In practice,  or 2S-GMM does not have good finite sample properties. So here are 

some improvements: 
 Demean , , as in practice it’s not always equal to zero 

Ω
1

, ,  

 
 Iterated GMM: idea is to keep running GMM until you find ,  close enough to 

, .  
• Step : Ω ,  or Ω ,  

min Ω ,     ,  

Continue this process until ,  is close enough to ,  (e.g. ,  is close to 
zero) 
 

 CU-GMM: integrate all the steps into one single minimization problem 
min Ω  

Note that we’re now not minimizing a quadratic form, so this estimator is of a 
different class of estimators.  
• Finite sample properties of this estimator are very good. 
• Consistent and asymptotically efficient. 
• However, in practice, there are some “local” optima where your optimization 

might get stuck  →  need a lot of robustness checks. 
 

 Weighted least squares 
, , | 0 

 Weighted non-linear least squares: 

min ,  
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FOC: 
,

  

, 0 

  ,  

Just-identification! 
 We can always reinterpret WNLS as GMM with instruments 

,
 

 More generally, any M-estimator can be reinterpreted as GMM when looking at the FOC 
 In practice, in the linear case, the optimal weights are inverse of the variance (which is 

unknown). Since it is unknown, it has to be estimated in the first step. 
 Efficient WLS: 

min
,

|
 

where |  is the result of a first step. 
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GMM v.s. Maximum Likelihood (ML) 
 

 Framework for ML 
 We have  iid observations: , … ,  
 Parametric model 

ℓ ,
a pdf

, Θ  

For example,  
 (Joint) Density function for , … ,  

ℓ , … , ; ℓ ,  

 Likelihood:   →  ℓ , … , ;  
 MLE : 

arg max ℓ , arg max ln ℓ ,  

FOC: 
ln ℓ ,

0    
1 ln ℓ ,

0 

Note that the latter is the mean of some moment conditions 
ln ℓ ,

0 

 
 What about other orthogonality conditions or other moment conditions? 

 Consider ,  such that , 0. Perform an affine regression of ℓ on 
(since both terms have mean zero, there’s no need for a constant term): 

ln ℓ ,
,  

with  
ln ℓ ,

, , ,  

By definition, 

, 0    , ℓ , 0 

 
,

ℓ ,

,

,
1

ℓ ,  
ℓ ,

ℓ ,

ℓ ,

, , ℓ

 

  
ln ℓ ,

Γ , ,  
 
The explained variance is equal to  
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Γ , , , Γ Γ , Γ 
This is the inverse of the variance of efficient GMM with moment condition . 

Γ ,
ln ℓ

Cramer‐Rao lower bound 

“Best GMM” is the one where we choose  to maximize the explained variance, i.e. 
choose , ℓ , . Therefore, GMM is MLE. More specifically, in this case, 

ln ℓ
 

where  is the Fisher information matrix. 
 

 Conclusion: 
Provided the parametric form of the density of the data , … ,  is known (here we 
focused on iid). 
 Result: GMM with optimal orthogonality conditions ℓ is numerically equivalent to 

ML. 
 

 


